Eick, Bettina; Ghorbanzadeh, Taleea Jalaeeyan Computing the Schur multipliers of the Lie \(p\)-rings in the family defined by a symbolic Lie \(p\)-ring presentation. (English) Zbl 1535.17021 J. Symb. Comput. 106, 68-77 (2021). Summary: A symbolic Lie \(p\)-ring presentation defines a family of nilpotent Lie rings with \(p^n\) elements for infinitely many primes \(p\) and a fixed positive integer \(n\). Symbolic Lie \(p\)-ring presentations are used in the classification of isomorphism types of nilpotent Lie rings of order \(p^n\) for all primes \(p\) and \(n\leq 7\). We describe an algorithm to compute the Schur multipliers of all nilpotent Lie rings in the family defined by a symbolic Lie \(p\)-ring presentation. We apply this to determine the Schur multipliers of all nilpotent Lie rings of order dividing \(p^6\) for all primes \(p\geq 5\). Via the Lazard correspondence this yields the Schur multipliers of all groups of order dividing \(p^6\) for all primes \(p\geq 5\). Cited in 1 Document MSC: 17B50 Modular Lie (super)algebras 17B56 Cohomology of Lie (super)algebras 20D15 Finite nilpotent groups, \(p\)-groups 20C25 Projective representations and multipliers Keywords:Schur multiplier; Lie ring; \(p\)-group Software:GAP; LiePRing PDFBibTeX XMLCite \textit{B. Eick} and \textit{T. J. Ghorbanzadeh}, J. Symb. Comput. 106, 68--77 (2021; Zbl 1535.17021) Full Text: DOI References: [1] Eick, B.; Horn, M.; Zandi, S., Schur multipliers and the Lazard correspondence, Arch. Math. (Basel), 99, 3, 217-226 (2012) · Zbl 1315.20013 [2] Eick, B.; Ghorbanzadeh, T. Jalaleeyan, Computing the Schur multipliers of a symbolic Lie p-ring (2019), ArXiv [3] Eick, B.; Nickel, W., Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group, J. Algebra, 320, 2, 927-944 (2008) · Zbl 1163.20022 [4] Hatui, S.; Kakkar, V.; Yadav, M. K., The Schur multipliers of p-groups of order \(p^5 (2018)\) [5] Karpilovski, G., Projective Representations of Finite Groups (1985), Marcel Dekker, INC · Zbl 0568.20016 [6] Lazard, M., Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér., 3, 71, 101-190 (1954) · Zbl 0055.25103 [7] Mann, A., Some questions about p-groups, J. Aust. Math. Soc., 67, 356-379 (1999) · Zbl 0944.20012 [8] Newman, M. F.; O’Brien, E. A.; Vaughan-Lee, M. R., Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278, 383-401 (2003) · Zbl 1072.20022 [9] O’Brien, E. A., The p-group generation algorithm, J. Symb. Comput., 9, 677-698 (1990) · Zbl 0736.20001 [10] O’Brien, E. A.; Vaughan-Lee, M. R., The groups with order \(p^7\) for odd prime p, J. Algebra, 292, 1, 243-258 (2005) · Zbl 1108.20016 [11] Robinson, D. J.S., A Course in the Theory of Groups, Graduate Texts in Math., vol. 80 (1982), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin · Zbl 0483.20001 [12] Schur, I., Über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 127, 20-50 (1904) · JFM 35.0155.01 [13] Sims, C. C., Computation with Finitely Presented Groups (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0828.20001 [14] GAP - Groups, Algorithms and Programming, version 4.10 (2019), Available from [15] Vaughan-Lee, M.; Eick, B., LiePRing - Database and Algorithms for Lie p-rings (2015), A GAP 4 package, see The GAP Group (2019) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.