×

Most small \(p\)-groups have an automorphism of order 2. (English) Zbl 1366.20011

Let \(f(p,n)\) be the number of isomorphism types of \(p\)-groups of order \(p^n\) and \(g(p,n)\) the number of those, whose automorphism group is a \(p\)-group. There is a conjecture that \(g(p,n)/f(p,n)\) goes to \(1\) with \(n\) to \(\infty\). In this paper, the author considers the question that \(p\) goes to \(\infty\) and \(n =6\) or \(7\). The result of the paper is that the limit will be \(1/3\). For the proof, the author uses Lie-ring methods. The reviewer could not see the relation between the title and the contents of the paper.

MSC:

20D15 Finite nilpotent groups, \(p\)-groups
20D45 Automorphisms of abstract finite groups

Keywords:

\(p\)-groups

Software:

Magma; LiePRing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997), 235-265. · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[2] P. A. Brooksbank, J. Maglione, andJ. B. Wilson, A fast isomorphism test for groups whose Lie algebra has genus 2, to appear, J. Algebra, arXiv:1508.03033. · Zbl 1406.20008
[3] P. A. Brooksbank and J. B. Wilson, Groups acting on tensor products, J. Pure Appl. Algebra 218 (2014), 405-416. · Zbl 1300.20032 · doi:10.1016/j.jpaa.2013.06.011
[4] G. T. Helleloid and U. Martin, The automorphism group of a finite \[p\] p-group, J. Algebra 312 (2007), 294-329. · Zbl 1120.20025 · doi:10.1016/j.jalgebra.2007.01.008
[5] J. Maglione, Efficient characteristic refinements for finite groups, J. Symb. Comput (2016). doi:10.1016/j.jsc.2016.07.007. · Zbl 1359.20025
[6] A. Mann, Some questions about \[p\] p-groups, J. Austral. Math. Soc. Ser. A 67 (1999), 356-379. · Zbl 0944.20012 · doi:10.1017/S1446788700002068
[7] U. Martin, Almost all \[p\] p-group have automorphism group a \[p\] p-group, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 78-82. · Zbl 0599.20032
[8] M. F. Newman, E. A. O’Brien, and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra 278 (2004), 383-401. · Zbl 1072.20022 · doi:10.1016/j.jalgebra.2003.11.012
[9] E. A. O’Brien and M. R. Vaughan-Lee, The groups with order \[p^7\] p7 for odd prime \[p\] p, J. Algebra 292 (2005), 243-258. · Zbl 1108.20016 · doi:10.1016/j.jalgebra.2005.01.019
[10] M. Vaughan-LeeandB. Eick, LiePRing—A GAP Package for computing with nilpotent Lie rings of prime-power order (2014). http://www.gap-system.org/Packages. · Zbl 1120.20025
[11] J. B. Wilson, More characteristic subgroups, Lie rings, and isomorphism tests for \[p\] p-groups, J. Group Theory 16 (2013), 875-897. · Zbl 1298.20051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.