×

A review of element-based Galerkin methods for numerical weather prediction: finite elements, spectral elements, and discontinuous Galerkin. (English) Zbl 1360.86004

Summary: Numerical weather prediction (NWP) is in a period of transition. As resolutions increase, global models are moving towards fully nonhydrostatic dynamical cores, with the local and global models using the same governing equations; therefore we have reached a point where it will be necessary to use a single model for both applications. The new dynamical cores at the heart of these unified models are designed to scale efficiently on clusters with hundreds of thousands or even millions of CPU cores and GPUs. Operational and research NWP codes currently use a wide range of numerical methods: finite differences, spectral transform, finite volumes and, increasingly, finite/spectral elements and discontinuous Galerkin, which constitute element-based Galerkin (EBG) methods. Due to their important role in this transition, will EBGs be the dominant power behind NWP in the next 10 years, or will they just be one of many methods to choose from? One decade after the review of numerical methods for atmospheric modeling by J. Steppeler et al. [“Review of numerical methods for nonhydrostatic weather prediction models”, Meteorology Atmos. Phys. 82, No. 1, 287–301 (2003; doi:10.1007/s00703-001-0593-8)], this review discusses EBG methods as a viable numerical approach for the next-generation NWP models. One well-known weakness of EBG methods is the generation of unphysical oscillations in advection-dominated flows; special attention is hence devoted to dissipation-based stabilization methods. Since EBGs are geometrically flexible and allow both conforming and non-conforming meshes, as well as grid adaptivity, this review is concluded with a short overview of how mesh generation and dynamic mesh refinement are becoming as important for atmospheric modeling as they have been for engineering applications for many years.

MSC:

86-08 Computational methods for problems pertaining to geophysics
86A10 Meteorology and atmospheric physics
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293-2315 · doi:10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2
[2] Ahmad N, Lindeman J (2007) Euler solutions using flux-based wave decomposition. Int J Numer Methods Fluids 54:47-72 · Zbl 1113.76054 · doi:10.1002/fld.1392
[3] Arakawa A, Konor CS (2009) Unification of the anelastic and quasi-hydrostatic systems of equations. Mon Weather Rev 137:710-726 · doi:10.1175/2008MWR2520.1
[4] Argyris JH, Kelsey S (1960) Energy theorems and structural analysis. Butterworths, London. Reprented from a series of article in Aircraft Eng 19, 742 · Zbl 1349.86015
[5] Aubry R, Vázquez M, Houzeaux G, Cela JM, Marras S (2010) An unstructured CFD approach to numerical weather prediction. In: Proceedings: 48th AIAA aerospace sciences meeting, 4-7 January 2010, Orlando, Florida. AIAA paper, pp 691-783
[6] Avila M, Codina R, Principe J (2014) Large eddy simulation of low mach number flows using dynamic and orthogonal subgrid scales. Comput Fluids 99:44-66 · Zbl 1391.76196 · doi:10.1016/j.compfluid.2014.04.003
[7] Babuska I, Szabo BA, Katz IN (1981) The p-version of the finite element method. SIAM J Numer Anal 18(3):515-545 · Zbl 0487.65059 · doi:10.1137/0718033
[8] Bacon D, Ahmad N, Boybeyi Z, Dunn T, Hall M, Lee C, Sarma R, Turner M (2000) A dynamically adaptive weather and dispersion model: the operational multiscale environment model with grid adaptivity (OMEGA). Mon Weather Rev 128:2044-2075 · doi:10.1175/1520-0493(2000)128<2044:ADAWAD>2.0.CO;2
[9] Baiocchi C, Brezzi F, Franca L (1993) Virtual bubbles and the Galerkin/least-squares type methods (Ga.L.S.). Comput Methods Appl Mech Eng 105:121-141 · Zbl 0772.76033 · doi:10.1016/0045-7825(93)90119-I
[10] Bannon P (1996) On the anelastic approximation for a compressible atmosphere. J Atmos Sci 53:3618-3628 · doi:10.1175/1520-0469(1996)053<3618:OTAAFA>2.0.CO;2
[11] Baruzzi G, Habashi W, Hefez N (1992) A second order accurate finite element method for the solutions of the Euler and Navier-Stokes equations. In: Proceedings of the 13th international conference on numerical methods in fluid dynamics, Rome. Springer, pp 509-513 · Zbl 0868.76072
[12] Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations. J Comput Phys 131:267-279. doi:10.1006/jcph.1996.5572 · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[13] Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138:251-285. doi:10.1006/jcph.1997.5454 · Zbl 0902.76056 · doi:10.1006/jcph.1997.5454
[14] Bastos J, Sadowski N (2003) Electromagnetic modeling by finite element methods, 1st edn. CRC, Boca Raton · doi:10.1201/9780203911174
[15] Batchelor G (1953) The condition for dynamical similarities of motions of a frictionless perfect-gas atmosphere. Q J R Meteorol Soc 79:224-235 · doi:10.1002/qj.49707934004
[16] Bauer W, Baumann M, Scheck L, Gassmann A, Heuveline V, Jones S (2014) Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity. Theor Comput Fluid Dyn 28(1):107-128 · doi:10.1007/s00162-013-0303-4
[17] Bazilevs Y, Calo V, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173-201 · Zbl 1169.76352 · doi:10.1016/j.cma.2007.07.016
[18] Behrens J (2006) Adaptive atmospheric modeling. Key techniques in grid generation, data structures, and numerical operations with applications. Springer, Berlin · Zbl 1138.86002
[19] Beland M, Coté J, Staniforth A (1983) The accuracy of a finite-element vertical discretization scheme for primitive equation models: comparison with a finite-difference scheme. Mon Weather Rev 111:2298-2318 · doi:10.1175/1520-0493(1983)111<2298:TAOAFE>2.0.CO;2
[20] Benacchio T, O’Neill WP, Klein R (2014) A blended soundproof-to-compressible numerical model for small to meso-scale atmospheric dynamics. Mon Weather Rev 142:4416-4438 · doi:10.1175/MWR-D-13-00384.1
[21] Benoit R, Desgagne M, Pellerin P, Pellerin S, Chartier Y, Desjardins S (1997) The Canadian MC2: a semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon Weather Rev 125:2382-2415 · doi:10.1175/1520-0493(1997)125<2382:TCMASL>2.0.CO;2
[22] Berg J, Mann J, Bechmann A, Courtney M, Jørgensen HE (2011) The bolund experiment, part i: flow over a steep, three-dimensional hill. Bound Layer Meteorol 141:219-243 · doi:10.1007/s10546-011-9636-y
[23] Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1):64-84 · Zbl 0665.76070 · doi:10.1016/0021-9991(89)90035-1
[24] Berger MJ, Oliger J (1984) Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys 53(3):484-512 · Zbl 0536.65071 · doi:10.1016/0021-9991(84)90073-1
[25] Bernardi C, Maday Y, Patera AT (1993) Domain decomposition by the mortar element method. In: Asymptotic and numerical methods for partial differential equations with critical parameters. Springer, pp 269-286 · Zbl 1059.76037
[26] Bey K, Oden JT (1991) A Runge-Kutta discontinuous finite element method for high speed flows. In: AIAA computational fluid dynamics conference, 10th, Honolulu, HI, pp 541-555 · Zbl 0790.76065
[27] Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108:1046-1053 · doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
[28] Boman EG, Catalyurek UV, Chevalier C, Devine KD (2012) The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: partitioning, ordering, and coloring. Sci Program 20(2):129-150
[29] Bonaventura L (2000) A semi-implicit, semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J Comput Phys 158:186-213 · Zbl 0963.76058 · doi:10.1006/jcph.1999.6414
[30] Botta N, Klein R, Langenberg S, Lutzenkirchen S (2004) Well balanced finite volume methods for nearly hydrostatic flows. J Comput Phys 196:539-565 · Zbl 1109.86304 · doi:10.1016/j.jcp.2003.11.008
[31] Boyd JP (1996) The erfc-log filter and the asymptotics of the Euler and Vandeven sequence accelerations.In: Ilin AV, Scott LR (eds) Proceedings of the third international conference on spectral and high order methods, Houston Journal of Mathematics, pp 267-276 · Zbl 1113.76054
[32] Boyd JP (1998) Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods. J Comput Phys 143:283-288 · Zbl 0920.65046 · doi:10.1006/jcph.1998.5961
[33] Brdar S (2012) A higher order locally adaptive discontinuous Galerkin approach for atmospheric simulations. Ph.D. thesis, Universitätsbibliothek Freiburg · Zbl 1255.86006
[34] Brdar S, Baldauf M, Dedner A, Klöfkorn R (2012) Comparison of dynamical cores for NWP models: comparison of COSMO and DUNE. Theor Comput Fluid Dyn 27:453-472 · doi:10.1007/s00162-012-0264-z
[35] Brezzi F, Bristeau M, Franca L, Mallet M, Rogé G (1992) A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput Methods Appl Mech Eng 96:117-129 · Zbl 0756.76044 · doi:10.1016/0045-7825(92)90102-P
[36] Brezzi F, Franca L, Hughes TJR, Russo A (1996) Stabilization techniques and subgrid scales capturing. Tech. Rep. http://ccm.ucdenver.edu/reports/rep083.pdf · Zbl 0881.65100
[37] Brezzi F, Franca LP, Hughes TR \[(1997) b=\int g\] b=∫g. Comput Methods Appl Mech Eng 145:329-339 · Zbl 0904.76041 · doi:10.1016/S0045-7825(96)01221-2
[38] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible navier-stokes equations. Comput Methods Appl Mech Eng 32:199-259 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[39] Bryan GH, Morrison H (2011) Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon Weather Rev 140:202-225 · doi:10.1175/MWR-D-11-00046.1
[40] Budd CJ, Williams JF (2009) Moving mesh generation using the parabolic Monge-Ampére equation. SIAM J Sci Comput 31:3438-3465 · Zbl 1200.65099 · doi:10.1137/080716773
[41] Burridge D, Steppeler J, Struffing R (1986) Finite element schemes for the vertical discretization of the ecmwf forecast model using linear elements. Tech. Rep. 54, ECMWF, Sheffild Park, Reading, UK · Zbl 1427.74071
[42] Burstedde C, Wilcox LC, Ghattas O (2011) p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J Sci Comput 33(3):1103-1133 · Zbl 1230.65106 · doi:10.1137/100791634
[43] Canuto C (1994) Stabilization of spectral methods by finite element bubble functions. Comput Methods Appl Mech Eng 116:13-26 · Zbl 0826.76056 · doi:10.1016/S0045-7825(94)80004-9
[44] Canuto C, Puppo G (1994) Bubble stabilization of spectral Legendre methods for the advection-diffusion equation. Comput Methods Appl Mech Eng 118:239-263 · Zbl 0847.76059 · doi:10.1016/0045-7825(94)90002-7
[45] Canuto C, Russo A, Van Kemenade V (1998) Stabilized spectral methods for the Navier-Stokes equations: residual-free bubbles and preconditioning. Comput Methods Appl Mech Eng 166:65-83 · Zbl 0940.76058 · doi:10.1016/S0045-7825(98)00083-8
[46] Canuto C, Van Kemenade V (1996) Bubble-stabilized spectral methods for the incomplressible Navier-Stokes equations. Comput Methods Appl Mech Eng 135:35-61 · Zbl 0894.76057 · doi:10.1016/0045-7825(95)00982-5
[47] Chang RY, Hsu CH (1996) A variable-order spectral element method for incompressible viscous flow simulation. Int J Numer Methods Eng 39(17):2865-2887 · Zbl 0885.76071 · doi:10.1002/(SICI)1097-0207(19960915)39:17<2865::AID-NME945>3.0.CO;2-Z
[48] Chavent G, Salzano G (1982) A finite-element method for the 1-d water flooding problem with gravity. J Comput Phys 45(3):307-344 · Zbl 0489.76106 · doi:10.1016/0021-9991(82)90107-3
[49] Chevalier C, Pellegrini F (2008) Pt-scotch: a tool for efficient parallel graph ordering. Parallel Comput 34(6):318-331 · doi:10.1016/j.parco.2007.12.001
[50] Christie I, Griffiths D, Mitchell A, Zienkiewicz OC (1976) Finite element methods for second order differential equations with significant first derivatives. Int J Numer Methods Eng 10:1389-1396 · Zbl 0342.65065 · doi:10.1002/nme.1620100617
[51] Ciarlet PG (1978) The finite element method for elliptic problems. Elsevier, Amsterdam · Zbl 0383.65058
[52] Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin methods. UMSI research report/University of Minnesota (Minneapolis, MN). Supercomputer Institute, vol 99, p 220 · Zbl 0526.76087
[53] Cockburn B, Shu CW (1991) The Runge-Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws. Rairo-Math Model Numer 25(3):337-361 · Zbl 0732.65094
[54] Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35(6):2440-2463 · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[55] Codina R (1993) A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput Methods Appl Mech Eng 110:325-342 · Zbl 0844.76048 · doi:10.1016/0045-7825(93)90213-H
[56] Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Eng 190:1579-1599 · Zbl 0998.76047 · doi:10.1016/S0045-7825(00)00254-1
[57] Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295-4321 · Zbl 1015.76045 · doi:10.1016/S0045-7825(02)00337-7
[58] Codina R, Blasco J (2002) Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales. Comput Vis Sci 4:167-174 · Zbl 0995.65101 · doi:10.1007/s007910100068
[59] Codina R, Oñate E, Cervera M (1992) The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements. Comput Methods Appl Mech Eng 94:239-262 · Zbl 0748.76082 · doi:10.1016/0045-7825(92)90149-E
[60] Collis SS, Chang Y (2002) The DG/VMS method for unified turbulence simulation. AIAA Pap 3124:24-27
[61] Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale higher-order finite element formulation for turbomachinery flow computations. Comput Methods Appl Mech Eng 194(45-47):4797-4823 · Zbl 1093.76032 · doi:10.1016/j.cma.2004.11.013
[62] COSMO P (1998) Consortium for small-scale modeling. COSMO project. www.cosmo-model.org/content/model/documentation · Zbl 0622.76074
[63] Coté J (1988) A Lagrange multiplier approach for the metric terms of semi-Lagrangian models on the sphere. Q J R Meteorol Soc 114(483):1347-1352
[64] Coté J, Desmarais J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC-MRB global environmental multiscale GEM model. Part II: results. Mon Weather Rev 126:1397-1418 · doi:10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2
[65] Coté J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC-MRB global environmental multiscale (gem) model. Part i: design considerations and formulation. Mon Weather Rev 126:1373-1395 · doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2
[66] Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrat. Bull Am Math Soc 49:1-23 · Zbl 0063.00985 · doi:10.1090/S0002-9904-1943-07818-4
[67] Courant R, Friedrichs K, Lewy H (1928) Uber die partiellen differenzengleichungen der mathematischen physik. Math Ann 100:32-74 · JFM 54.0486.01 · doi:10.1007/BF01448839
[68] Courtier P, Freydier C, Geleyn J, Rabier F, Rochas M (1991) The arpege project at meteo-france. In: ECMWF workshop on numerical methods in atmospheric modelling vol II, 2, pp 193-231 · Zbl 1405.65127
[69] Cullen M (1973) A simple finite element method for meteorological problems. J Inst Math Appl 11:15-31 · Zbl 0257.65090 · doi:10.1093/imamat/11.1.15
[70] Cullen M (1974) A finite element method for a non-linear initial value problem. IMA J Appl Math 13:233-247 · Zbl 0279.65090 · doi:10.1093/imamat/13.2.233
[71] Cullen MJP (1990) A test of a semi-implicit integration technique for a fully compressible nonhydrostatic model. Q J R Meteorol Soc 116:1253-1258 · doi:10.1002/qj.49711649513
[72] Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405-418
[73] Dennis J, Vertenstein M, Worley P, Mirin A, Craig A, Jacob R, Mickelson S (2012) Computational performance of ultra-high-resolution capability in the community earth system model. Int J High Perf Comput Appl 26:43-53
[74] Dennis JM, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, St-Cyr A, Taylor MA, Worley PH (2012) CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int J High Perf Comput Appl 26 · Zbl 1297.76109
[75] Dietachmayer GS, Droegemeier KK (1992) Application of continuous dynamic grid adaptation techniques to meteorological modeling. Part 1: basic formulation and accuracy. Mon Weather Rev 120(8):1675-1706 · doi:10.1175/1520-0493(1992)120<1675:AOCDGA>2.0.CO;2
[76] Dolejši V, Feistauer M (2004) A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J Comput Phys 198:727-746 · Zbl 1116.76386 · doi:10.1016/j.jcp.2004.01.023
[77] Doms G, Schattler U (2002) A description of the nonhydrostatic regional model LM. Part I: dynamics and numerics. Consortium for small-scale modelling (COSMO) LM F90 2.18. Tech. rep., DWD, Germany, www.cosmo-model.org
[78] Donea J (1984) A Taylor-Galerkin method for convection transport problems. Int J Numer Methods Eng 20:101-119 · Zbl 0524.65071 · doi:10.1002/nme.1620200108
[79] Donea J, Huerta A (2003) Finite element methods for flow problems, 1st edn. Wiley, New York · doi:10.1002/0470013826
[80] Dongarra JJ, Luszczek P, Petitet A (2003) The LINPACK benchmark: past, present, and future. concurrency and computation: practice and experience. Concurrency and computation: practice and experience 15, 2003
[81] Dorr MR (1988) Domain decomposition via Lagrange multipliers. UCRL-98532, Lawrence Livermore National Laboratory, Livermore, CA
[82] Douglas J, Wang J (1989) An absolutely stabilized finite element method. Math Comput 52:495-508 · Zbl 0669.76051 · doi:10.1090/S0025-5718-1989-0958871-X
[83] Dudhia J (1993) A nonhydrostatic version of the penn state-ncar mesoscale model: validation tests and simulation of the atlantic cyclone and cold front. Mon Weather Rev 121:1493-1513 · doi:10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
[84] Durran D (1989) Improving the anelastic approximation. J Atmos Sci 46:1453-1461 · doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
[85] Durran D (1998) Numerical methods for wave equations in geophysical fluid dynamics, 1st edn. Springer, Berlin · Zbl 0918.76001
[86] Durran D (2008) A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J Fluid Mech 601:365-379 · Zbl 1151.76572 · doi:10.1017/S0022112008000608
[87] Durran D, Blossey P (2012) Implicit-explicit multistep methods for fast-wave-slow-wave problems. Mon Weather Rev 140:1307-1325 · doi:10.1175/MWR-D-11-00088.1
[88] Emanuel KA (1994) Atmospheric convection. Oxford University Press, Oxford
[89] Eriksson LE (1982) Generation of boundary conforming grids around wing-body configurations using transfinite interpolation. AIAA J. 20:1313-1320 · Zbl 0496.76009 · doi:10.2514/3.7980
[90] Eskilsson C, Sherwin SJ (2004) A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations. Int J Numer Methods Fluids 45:605-623 · Zbl 1085.76544 · doi:10.1002/fld.709
[91] Farhat C, Rajasekharan A, Koobus B (2006) A dynamic variational multiscale method for large eddy simulations on unstructured meshes. Comput Methods Appl Mech Eng 195(13-16):1667-1691. doi:10.1016/j.cma.2005.05.045. http://www.sciencedirect.com/science/article/pii/S0045782505003014. A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday · Zbl 1116.76046
[92] Favre A (1983) Turbulence: space-time statistical properties and behavior in supers onic flows. Phys Fluids 26:2851-2863 · Zbl 0524.76069 · doi:10.1063/1.864049
[93] Fischer PF, Kruse GW, Loth F (2002) Spectral element methods for transitional flows in complex geometries. J Sci Comput 17(1-4):81-98 · Zbl 1001.76075 · doi:10.1023/A:1015188211796
[94] Fischer PF, Mullen JS (2001) Filter-based stabilization of spectral element methods. C R Acad Sci Ser I Math 332:265-270 · Zbl 0990.76064
[95] Fletcher C (1987) Computational techniques for fluid dynamics—vol I: fundamentals and general techniques, 1st edn. Springer, Berlin
[96] Fornberg B (1998) A practical guide to pseudospectral methods, vol 1. Cambridge University Press, Cambridge · Zbl 0912.65091
[97] Fortin M, Fortin A (1989) A new approach for the fem simulation of viscoelastic flows. J Non-Newton Fluid Mech 32(3):295-310 · Zbl 0672.76010 · doi:10.1016/0377-0257(89)85012-8
[98] Fournier A, Taylor MJ, Tribbia JJ (2004) The spectral element atmospheric model (SEAM): high-resolution parallel computation and localized resolution of regional dynamics. Mon Weather Rev 132:726-748 · doi:10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2
[99] Fraedrich K, Kirk E, Luksch U, Lunkeit F (2005) The portable university model of the atmosphere (PUMA): Storm track dynamics and low frequency variabilit. Meteorol Z 14:735-745 · doi:10.1127/0941-2948/2005/0074
[100] Franca L, Frey S, Hughes T (1992) Stabilized finite element methods. I: application to the advective-diffusive model. Comput Methods Appl Mech Eng 95(2):253-276 · Zbl 0759.76040 · doi:10.1016/0045-7825(92)90143-8
[101] Francis P (1972) The possible use of Laguerre polynomials for representing the vertical structure of numerical models of the atmosphere. Q J R Meteorol Soc 98:662-667 · doi:10.1002/qj.49709841714
[102] Fries TP, Matthies HG (2004) A review of Petrov-Galerkin stabilization approaches and an extension to meshfree methods. Tech. Rep. 1, Institute of Scientific Computing. Technical University Braunschweig
[103] Gaberšek S, Giraldo FX, Doyle J (2012) Dry and moist idealized experiments with a two-dimensional spectral element model. Mon Weather Rev 140:3163-3182 · doi:10.1175/MWR-D-11-00144.1
[104] Gal-Chen T, Somerville R (1975) On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys 17:209-228 · Zbl 0297.76020 · doi:10.1016/0021-9991(75)90037-6
[105] Galerkin BG (1915) Series solution of some problems of elastic equilibrium of rods and plates. Vestn Inzh Tekh 19:897-908
[106] Gassmann A (2005) An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteorol Atmos Phys 88:23-38 · doi:10.1007/s00703-003-0053-8
[107] Gassmann A, Herzog HJ (2008) Towards a consistent numerical compressible non-hydrostatic model using generalized hamiltonian tools. Q J R Meteorol Soc 134:1597-1613 · doi:10.1002/qj.297
[108] Geurts BJ (2004) Elements of direct and large eddy simulation. Edwards, Philadelphia
[109] Ginis I, Richardson RA, Rothstein LM (1998) Design of a multiply nested primitive equation ocean model. Mon Weather Rev 126(4):1054-1079 · doi:10.1175/1520-0493(1998)126<1054:DOAMNP>2.0.CO;2
[110] Giraldo FX (1997) Lagrange-Galerkin methods on spherical geodesic grids. J Comput Phys 136:197-213 · Zbl 0909.65066 · doi:10.1006/jcph.1997.5771
[111] Giraldo FX (2000) The Lagrange-Galerkin method for the two-dimensional shallow water equations on adaptive grids. Int J Numer Methods Fluids 33(6):789-832 · Zbl 0989.76047 · doi:10.1002/1097-0363(20000730)33:6<789::AID-FLD29>3.0.CO;2-1
[112] Giraldo FX (2001) A spectral element shallow water model on spherical geodesic grids. Int J Numer Methods Fluids 35:869-901 · Zbl 1030.76045 · doi:10.1002/1097-0363(20010430)35:8<869::AID-FLD116>3.0.CO;2-S
[113] Giraldo FX (2001) A spectral element shallow water model on spherical geodesic grids. Int J Numer Methods Fluids 35:869-901 · Zbl 1030.76045 · doi:10.1002/1097-0363(20010430)35:8<869::AID-FLD116>3.0.CO;2-S
[114] Giraldo FX (2005) Semi-implicit time-integrators for a scalable spectral element atmospheric model. Q J R Meteorol Soc 131:2431-2454 · doi:10.1256/qj.03.218
[115] Giraldo FX (2015) Element-based Galerkin methods on tensor-product bases. In: Lecture notes, pp 430 · Zbl 0795.76045
[116] Giraldo FX, Hesthaven JS, Warburton T (2002) Nodal high-order discontinuous Galerkin methods for spherical shallow water equations. J Comput Phys 181:499-525 · Zbl 1178.76268 · doi:10.1006/jcph.2002.7139
[117] Giraldo FX, Kelly JF, Constantinescu EM (2013) Implicit-explicit formulations for a 3D nonhydrostatic unified model of the atmosphere (NUMA). SIAM J Sci Comput 35:1162-1194 · Zbl 1280.86008 · doi:10.1137/120876034
[118] Giraldo FX, Restelli M (2008) A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases. J Comput Phys 227:3849-3877 · Zbl 1194.76189 · doi:10.1016/j.jcp.2007.12.009
[119] Giraldo FX, Rosmond T (2004) A scalable spectral element eulerian atmospheric model (see-am) for numerical weather prediction: dynamical core tests. Mon Weather Rev 132:133-153 · doi:10.1175/1520-0493(2004)132<0133:ASSEEA>2.0.CO;2
[120] Gjesdal T, Wasberg CE, Reif BAP, Andreassen Ø (2009) Variational multiscale turbulence modelling in a high order spectral element method. J Comput Phys 228:7333-7356 · Zbl 1172.76021 · doi:10.1016/j.jcp.2009.06.029
[121] Gopalakrishnan SG, Bacon DP, Ahmad NN, Boybeyi Z, Dunn TJ, Hall MS, Jin Y, Lee PCS, Mays DE, Madala RV (2002) An operational multiscale hurricane forecasting system. Mont Weather Rev 130(7):1830-1847 · doi:10.1175/1520-0493(2002)130<1830:AOMHFS>2.0.CO;2
[122] Gordon WN, Hall CA (1973) Construction of curvilinear coordinate systems and application to mesh generation. Int J Numer Methods Eng 7:461-477 · Zbl 0271.65062 · doi:10.1002/nme.1620070405
[123] Gravemeier V (2003) The variational multiscale method for laminar and turbulent incompressible flow. Ph.D. thesis, Universitat Stuttgart · Zbl 1177.76341
[124] Grell G, Dudhia J, Stauffer D (1995) A description of the fifth-generation penn state/ncar mesoscale model (mm5). Tech. rep., NCAR Technical Note NCART/TN-398+STR · Zbl 1120.65338
[125] Guba O, Taylor MA, Ullrich PA, Overfelt JR, Levy MN (2014) The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware n umerical viscosity. Geosci Model Dev 7:4081-4117 · doi:10.5194/gmdd-7-4081-2014
[126] Guermond J, Marra A, Quartapelle L (2006) Subgrid stabilized projection method for 2d unsteady flows at high reynolds numbers. Comput Methods Appl Mech Eng 195:5857-5876 · Zbl 1121.76036 · doi:10.1016/j.cma.2005.08.016
[127] Guermond J, Pasquetti R (2009) Entropy viscosity method for high-order approximations of conservation laws. In: Proceedings of the ICOSAHOM 2009 conference, Trondheim, Norway. Springer · Zbl 1216.65136
[128] Guermond JL, Pasquetti R (2008) Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C R Acad Sci Ser I 346:801-806 · Zbl 1145.65079 · doi:10.1016/j.crma.2008.05.013
[129] Guermond JL, Pasquetti R, Popov B (2011) Entropy viscosity method for nonlinear conservation laws. J Comput Phys 230:4248-4267 · Zbl 1220.65134 · doi:10.1016/j.jcp.2010.11.043
[130] Guo BY, Ma HP, Tadmor E (2001) Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J Numer Anal 39:1254 · Zbl 1020.65071 · doi:10.1137/S0036142999362687
[131] Haidvogel DB, Curchitser E, Iskandarani M, Hughes R, Taylor M (1997) Global modelling of the ocean and atmosphere using the spectral element method. Atmos Ocean 35:505-531 · doi:10.1080/07055900.1997.9687363
[132] Hansbo P (1993) Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables. J Comput Phys 109:274-288 · Zbl 0795.76045 · doi:10.1006/jcph.1993.1217
[133] Hesthaven JS, Warburton T (2008) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, vol 54. Springer, New York · Zbl 1134.65068
[134] Heus T, van Heerwaarden CC, Jonker H, Siebesma AP, Axelsen S, van den Dries K, Geoffroy O, Moene AF, Pino D, de Roode SR, Vilà-Guerau de Arellano J (2010) Formulation of the Dutch atmospheric large-eddy simulation (DALE) and overview of its applications. Geosci Model Dev 3:415-555 · doi:10.5194/gmd-3-415-2010
[135] Hodur R (1997) The naval research laboratory’s coupled ocean/atmosphere mesoscale prediction system (coamps). Mon Weather Rev 125:1414-1430 · doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2
[136] Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR, Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker NL (2014) The navy global environmental model. Oceanography 27(3):116-125 · doi:10.5670/oceanog.2014.73
[137] Holmstrom I (1963) On a method for parametric representation of the state of the atmosphere. Tellus 15:127-149 · doi:10.1111/j.2153-3490.1963.tb01372.x
[138] Holton J (2004) An introduction to dynamic meteorology, 4th edn. Elsevier, Amsterdam Internation Geophysics Series: Vol. 88
[139] Houze RA (1993) Cloud dynamics. Academic Press, San Diego
[140] Houzeaux G, Aubry R, Vázquez M (2011) Extension of fractional step techniques for incompressible flows: the preconditioned orthomin(1) for the pressure schur complement. Comput Fluids 44:297-313 · Zbl 1271.76208 · doi:10.1016/j.compfluid.2011.01.017
[141] Houzeaux G, Eguzkitza B, Vázquez M (2009) A variational multiscale model for the advection-diffusion-reaction equation. Commun Numer Methods Eng 25:787-809 · Zbl 1168.65413 · doi:10.1002/cnm.1156
[142] Houzeaux G, Vázquez M, Aubry R, Cela JM (2009) A massively parallel fractional step solver for incompressible flows. J Comput Phys 228:6316-6332 · Zbl 1261.76030 · doi:10.1016/j.jcp.2009.05.019
[143] Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387-401 · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[144] Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the finie-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539-557 · Zbl 1152.65111 · doi:10.1137/050645646
[145] Hughes TJR, Scovazzi G, Tezduyar TE (2010) Stabilized methods for compressible flows. J Sci Comput 43:343-368 · Zbl 1203.76130 · doi:10.1007/s10915-008-9233-5
[146] Hughes, TJR; Brooks, AN; Hughes, TJR (ed.), A multidimensional upwind scheme with no crosswind diffusion, No. 32, 19-35 (1979), New York
[147] Hughes TJR, Brooks AN (1982) A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. Finite Elem Fluids 4:47-65
[148] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135-4195 · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[149] Hughes TJR, Feijóo G, Mazzei L, Quincy J (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3-24 · Zbl 1017.65525 · doi:10.1016/S0045-7825(98)00079-6
[150] Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Last-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173-189 · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[151] Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58:305-328 · Zbl 0622.76075 · doi:10.1016/0045-7825(86)90152-0
[152] Hughes TJR, Mallet M, Mizukami A (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54:341-355 · Zbl 0622.76074 · doi:10.1016/0045-7825(86)90110-6
[153] Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47-59 · Zbl 0998.76040 · doi:10.1007/s007910050051
[154] Hughes TJR, Scovazzi G, Bochev PB, Buffa A (2006) A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method. Comput Methods Appl Mech Eng 195:2761-2787 · Zbl 1124.76027 · doi:10.1016/j.cma.2005.06.006
[155] Hughes TJR, Stewart J (1996) A space-time formulation for multiscale phenomena. J Comput Appl Math 74:217-229 · Zbl 0869.65061 · doi:10.1016/0377-0427(96)00025-8
[156] Hughes TJR, Tezduyar T (1984) Finite element methods for first-order hyperbolic systems with particular emphasis pn the compressible Euler equations. Comput Methods Appl Mech Eng 45:217-284 · Zbl 0542.76093 · doi:10.1016/0045-7825(84)90157-9
[157] Hughes TJR (2000) The finite element method: linear static and dynamics finite element analysis, 2nd edn. Dover, New York · Zbl 1191.74002
[158] Iskandarani M, Haidvogel DB, Boyd JP (1995) A staggered spectral element model with application to the oceanic shallow water equations. Int J Numer Methods Fluids 20:393-414 · Zbl 0870.76057 · doi:10.1002/fld.1650200504
[159] Jablonowski C (2004) Adaptive grids in weather and climate modeling. Ph.D. thesis, The University of Michigan · Zbl 0487.65059
[160] Jablonowski C, Williamson D (2006) A baroclinic instability test case for atmospheric model dynamical cores. Q J R Meteorol Soc 132:2943-2975 · doi:10.1256/qj.06.12
[161] Jablonowski C, Williamson DL (2011) The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models. Lecture notes in computational science and engineering, vol 80. Springer, pp 381-482 · Zbl 1109.86304
[162] Jähn M, Knoth O, König M, Vogelsberg U (2014) ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach. Geosci Model Dev Disc 7(4):4463-4525 · doi:10.5194/gmdd-7-4463-2014
[163] Jamet P (1978) Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J Numer Anal 15:912-928 · Zbl 0434.65091 · doi:10.1137/0715059
[164] Janjic Z (1989) On the pressure gradient force error in \[\sigma\] σ-coordinate spectral models. Mon Weather Rev 117:2285-2292 · doi:10.1175/1520-0493(1989)117<2285:OTPGFE>2.0.CO;2
[165] Janjic Z (1994) The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927-945 · doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[166] Janjic Z (2003) A nonhydrostatic model based on a new approach. Meteorol Atmos Phys 82:271-285 · doi:10.1007/s00703-001-0587-6
[167] Janjic Z, Gerrity J, Nickovic S (2001) An alternative approach to non-hydrostatic modeling. Mon Weather Rev 129:1164-1178 · doi:10.1175/1520-0493(2001)129<1164:AAATNM>2.0.CO;2
[168] John V, Knobloch P (2007) On spurious oscillations at layers diminishing \[(sold\] sold) methods for convection-diffusion equations: part I—a review. Comput Methods Appl Mech Eng 196:2197-2215 · Zbl 1173.76342 · doi:10.1016/j.cma.2006.11.013
[169] Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge · Zbl 0628.65098
[170] Johnson C, Nävert U, Pitkaranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45:285-312 · Zbl 0526.76087 · doi:10.1016/0045-7825(84)90158-0
[171] Johnson C, Szepessy A (1988) Shock-capturing streamline diffusion finite element methods for nonlinear conservation laws. In: Hughes TJR, Tezduyar T (eds) AMD, The American Society of Mechanical Engineers, vol 95 · Zbl 0685.65086
[172] Kanevsky A, Carpenter MH, Hesthaven JS (2006) Idempotent filtering in spectral and spectral element methods. J Comput Phys 220:41-58 · Zbl 1106.65089 · doi:10.1016/j.jcp.2006.05.014
[173] Karniadakis G, Sherwin S (2005) Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford · Zbl 1116.76002 · doi:10.1093/acprof:oso/9780198528692.001.0001
[174] Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359-392 · Zbl 0915.68129 · doi:10.1137/S1064827595287997
[175] Kaul KU (2010) Three-dimensional elliptic grid generation with fully automatic boundary constraints. J Comput Phys 229:5966-5979 · Zbl 1195.65194 · doi:10.1016/j.jcp.2010.04.028
[176] Kelly JF, Giraldo FX (2012) Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode. J Comput Phys 231:7988-8008 · Zbl 1284.65134 · doi:10.1016/j.jcp.2012.04.042
[177] Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteorol Monogr 10:32
[178] Klein R (2000) Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. ZAMM 80:765-777 · Zbl 1050.76056 · doi:10.1002/1521-4001(200011)80:11/12<765::AID-ZAMM765>3.0.CO;2-1
[179] Klein R, Achatz U, Bresch D, Knio O, Smolarkiewicz PK (2010) Regime of validity of soundproof atmospheric flow models. J Atmos Sci 67:3226-3237 · doi:10.1175/2010JAS3490.1
[180] Klemp J (2011) A terrain-following coordinate with smoothed coordinate surfaces. Mon Weather Rev 139:2163-2169 · doi:10.1175/MWR-D-10-05046.1
[181] Klemp J, Wilhelmson R (1978) The simulation of three-dimensional convective storm dynamics. J Atmos Sci 35:1070-1096 · doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2
[182] Knupp PM, Steinberg S (1993) Fundamentals of grid generation. CRC-Press, Boca Raton · Zbl 0855.65123
[183] Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes - application to vortex shedding. Comput Methods Appl Mech Eng 193:1367-1383 · Zbl 1079.76567 · doi:10.1016/j.cma.2003.12.028
[184] Kopera MA, Giraldo FX (2014) Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations. J Comput Phys 275:92-117 · Zbl 1349.76226 · doi:10.1016/j.jcp.2014.06.026
[185] Kopera MA, Giraldo FX (2014) Mass conservation of the unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations. J Comput Phys. doi:10.1016/j.jcp.2015.05.010 (to appear) · Zbl 1349.76227
[186] Kopriva DA (1996) A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method. J Comput Phys 128(2):475-488 · Zbl 0866.76064 · doi:10.1006/jcph.1996.0225
[187] Krivodonova L (2007) Limiters for high-order discontinuous Galerkin methods. J Comput Phys 226:879-896 · Zbl 1125.65091 · doi:10.1016/j.jcp.2007.05.011
[188] Kühnlein C, Smolarkiewicz PK, Dörnbrack A (2012) Modelling atmospheric flows with adaptive moving meshes. J Comput Phys 231(7):2741-2763 · Zbl 1426.76390 · doi:10.1016/j.jcp.2011.12.012
[189] Kwizak M, Robert A (1971) A semi-implicit scheme for grid point atmospheric models of the primitive equations. Mon Weather Rev 99:32-36 · doi:10.1175/1520-0493(1971)099<0032:ASSFGP>2.3.CO;2
[190] Lang J, Cao W, Huang W, Russell RD (2003) A two-dimensional moving finite element method with local refinement based on a posteriori error estimates. Appl Numer Math 46(1):75-94 · Zbl 1022.65107 · doi:10.1016/S0168-9274(03)00013-8
[191] Lanser D, Blom JG, Verwer JG (2001) Time integration of the shallow water equations in spherical geometry. J Comput Phys 171:373-393 · Zbl 1051.76047 · doi:10.1006/jcph.2001.6802
[192] Laprise R (1992) The euler equations of motion with hydrostatic pressure as an independent variable. Mon Weather Rev 120:197-207 · doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
[193] Lauter M, Giraldo FX, Handorf D, Dethloff K (2008) A discontinuous Galerkin method for the shallow water equations using spherical triangular coordinates. J Comput Phys 227:10226-10242 · Zbl 1218.76028 · doi:10.1016/j.jcp.2008.08.019
[194] Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397-422 · Zbl 0772.76037 · doi:10.1016/0045-7825(93)90033-T
[195] Lee J, Bleck R, MacDonald A, Bao J, Benjamin S, Middlecoff J, Wang N, Brown J (2008) Fim: a vertically flow-following, finite-volume icosahedral model. In: 22nd Conference on weather analysis forecasting/18th conference on numerical weather prediction, Park City, UT, Am Meteorol Soc (preprints)
[196] Lee JLL, MacDonald AE (2009) A finite-volume icosahedral shallow-water model on a local coordinate. Mon Weather Rev 137(4):1422-1437 · doi:10.1175/2008MWR2639.1
[197] Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys 18:237-248 · doi:10.1016/S0065-2687(08)60464-1
[198] Lesaint P, Raviart PA (1974) On a finite element method for solving the neutron transport equation. Academic Press, San Diego · doi:10.1016/B978-0-12-208350-1.50008-X
[199] Levasseur V, Sagaut P, Chalot F, Davroux A (2006) An entropy-variable-based vms/gls method for the simulation of compressible flows on unstructured grids. Comput Methods Appl Mech Eng 195(9-12):1154-1179. doi:10.1016/j.cma.2005.04.009 · Zbl 1115.76050
[200] Ley GW, Elsberry RL (1976) Forecasts of typhoon irma using a nested grid model. Mon Weather Rev 104:1154 · doi:10.1175/1520-0493(1976)104<1154:FOTIUA>2.0.CO;2
[201] Lilly DK (1962) On the numerical simulation of buoyant convection. Tellus 14:148-172 · doi:10.1111/j.2153-3490.1962.tb00128.x
[202] Lipps F, Hemler R (1982) A scale analysis of deep moist convection and some related numerical calculations. J Atmos Sci 29:2192-2210 · doi:10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2
[203] Lohner R, Mut F, Jebral J, Aubry R, Houzeaux G (2011) Deflated preconditioned conjugate gradient solvers for the pressure-Poisson equation: extensions and improvements. Int J Numer Methods Fluids 87:2-14 · Zbl 1242.76128 · doi:10.1002/nme.2932
[204] Ma H (1993) A spectral element basin model for the shallow water equations. J Comput Phys 109:133-149 · Zbl 0790.76065 · doi:10.1006/jcph.1993.1205
[205] Maday Y, Mavriplis C, Patera AT (1988) Nonconforming mortar element methods: application to spectral discretizations. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center · Zbl 0692.65055
[206] Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W (2002) The operational global icosahedral-hexagonal gridpoint model GME: description and high-resolution tests. Mon Weather Rev 130:319-338 · doi:10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2
[207] Marchuk GI (1974) Numerical methods in weather prediction. Academic Press, San Diego
[208] Marras S (2012) Variational multiscale stabilization of finite and spectral elements for dry and moist atmospheric problems. Ph.D. thesis, Universitat Politécnica de Catalunya · Zbl 0497.76041
[209] Marras S, Giraldo FX (2015) A parameter-free dynamic alternative to hyper-viscosity for coupled transport equations: application to the simulation of 3D squall lines using spectral elements. J Comput Phys 283:360-373 · Zbl 1351.86003 · doi:10.1016/j.jcp.2014.11.046
[210] Marras S, Kelly JF, Giraldo FX, Vázquez M (2012) Variational multiscale stabilization of high-order spectral elements for the advection-diffusion equation. J Comput Phys 231:7187-7213 · Zbl 1284.65119 · doi:10.1016/j.jcp.2012.06.028
[211] Marras S, Kopera M, Giraldo FX (2014) Simulation of shallow water jets with a unified element-based continuous/discontinuous Galerkin model with grid flexibility on the sphere. Q J R Meteorol Soc. doi:10.1002/qj.2474
[212] Marras S, Moragues M, Vázquez M, Jorba O, Houzeaux G (2013) A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows. J Comput Phys 236:380-407 · Zbl 1286.65126 · doi:10.1016/j.jcp.2012.10.056
[213] Marras S, Moragues M, Vázquez MR, Jorba O, Houzeaux G (2013) Simulations of moist convection by a variational multiscale stabilized finite element method. J Comput Phys 252:195-218 · Zbl 1286.65126 · doi:10.1016/j.jcp.2013.06.006
[214] Marras S, Müller A, Giraldo, FX (2014) An LES-like stabilization of the spectral element solution of the Euler equations for atmospheric flows. In: WCCM XI—ECCM V—ECFD VI, Barcelona, Spain, pp 1-22 · Zbl 1074.76642
[215] Marras S, Müller A, Giraldo FX (2014) Physics-based stabilization of spectral elements for the 3d Euler equations of moist atmospheric convection. In: Proceedings of the ICOSAHOM 2014, LNCS, Salt Lake City, UT. Springer (accepted) · Zbl 1352.35192
[216] Marras S, Nazarov M, Giraldo FX (2015) A stabilized spectral element method based on a dynamic SGS model for LES. Submitted for review (see pre-print). https://www.researchgate.net/publication/271526242_A_stabilized_spectral_element_method_based_on_a_dynamic_SGS_model_for_LES._Euler_and_non-linear_scalar_equations · Zbl 1349.76127
[217] Mastin CW, Thompson JF (1978) Transformation of three-dimensional regions onto rectangular regions by elliptic systems. Numer Math 29:397-407 · Zbl 0424.65048 · doi:10.1007/BF01432877
[218] McGregor, JL; Dix, MR; Hodnett, PF (ed.), The CSIRO conformal-cubic atmospheric gcm, 197-202 (2001), Dordrecht · Zbl 1074.76642 · doi:10.1007/978-94-010-0792-4_25
[219] Mesinger F, Janjic Z, Nickovic S, Gavrilov D, Deaven D (1988) The step-mountain coordinate: model description and performance for cases of alpine lee cyclogenesis and for a case of an appalachian redevelopmen. Mon Weather Rev 116:1493-1518 · doi:10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2
[220] Miyakoda K, Rosati A (1977) One-way nested grid models: the interface conditions and the numerical accuracy. Mon Weather Rev 105:1092-1107 · doi:10.1175/1520-0493(1977)105<1092:OWNGMT>2.0.CO;2
[221] MMesh3D: a 3D elliptic mesh generation tool for simply connected domains with topography. http://mmesh3d.wikispaces.com/ (2010)
[222] Moragues M, Vázquez M, Houzeaux G, Aubry R (2010) Variational multiscale stabilization of compressible flows in parallel architectures. In: International conference on parallel CFD, Kaoshiung, Taiwan
[223] Morrison H, Grabowski WW (2008) Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J Atmos Sci 65:792-812 · doi:10.1175/2007JAS2374.1
[224] Müller A, Behrens J, Giraldo FX, Wirth V (2013) Comparison between adaptive and uniform deiscontinuous Galerkin simulations in 2D dry bubble experiments. J Comput Phys 235:371-393 · doi:10.1016/j.jcp.2012.10.038
[225] Nair RD, Choi HW, Tufo HM (2009) Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Comput Fluids 38(2):309-319 · Zbl 1237.76129 · doi:10.1016/j.compfluid.2008.04.006
[226] Nair RD, Levy MN, Lauritzen PH (2011) Emerging numerical methods for atmospheric modeling. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models. Lecture notes in computational science and engineering, vol 80. Springer, pp 251-311
[227] Nair RD, Thomas SJ, Loft RD (2005) A discontinuous Galerkin global shallow water model. Mon Weather Rev 133:876-888 · doi:10.1175/MWR2903.1
[228] Nair RD, Thomas SJ, Loft RD (2005) A discontinuous Galerkin transport scheme on the cubed sphere. Mon Weather Rev 133:814-828 · doi:10.1175/MWR2890.1
[229] Nazarov M, Hoffman J (2013) Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods. Int J Numer Methods Fluids 71:339-357 · Zbl 1430.76314 · doi:10.1002/fld.3663
[230] Neale RB, Chen C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Morrison H, Cameron-Smith P, Collins WD, Iacono MJ, Easter RC, Ghan SJ, Liu X, Rasch PJ, Taylor MA (2010) Description of the NCAR community atmosphere model (CAM 5.0). Tech. rep., National Center for Atmospheric Research, NCAR
[231] Norman MR (2013) Targeting atmosphjeric simulation algorithms for large, distributed-memory, GPU-accelerated computers. In: Yuen DA, Wang L, Chi X, Johnsson L, Ge W, Shi Y (eds) GPU solutions to multi-scale problems in science and engineering, Lecture notes in earth system sciences. Springer, pp 271-282 · Zbl 0866.76064
[232] Ockendon H, Ockendon JR (2004) Waves and compressible flow. Springer, Berlin · Zbl 1041.76001
[233] Ogura Y, Phillips N (1962) Scale analysis of deep and shallow convection in the atmosphere. J Atmos Sci 19:173-179 · doi:10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
[234] Ouvrard H, Koobus B, Dervieux A, Salvetti MV (2010) Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput Fluids 39(7):1083-1094. doi:10.1016/j.compfluid.2010.01.017 · Zbl 1242.76080
[235] Patera AT (1984) A spectral method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468-488 · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[236] Persson PO, Peraire J (2006) Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the 44th AIAA aerospace sciences meeting and exhibit AIAA-2006-112
[237] Phillips N (1957) A coordinate system having some special advantages for numerical forecasting. J Meteorol 14:184-185 · doi:10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2
[238] Pielke R, Cotton W, Walko R, Tremback C, Lyons W, Grasso L, Nicholls M, Moran M, Wesley D, Lee T, Copeland J (1992) A comprehensive meteorological modeling system—RAMS. Metorol Atmos Phys 49:69-91 · doi:10.1007/BF01025401
[239] Piggott P, Pain P, Gorman GJ, Power P, Goddard AJH (2005) h, r, and hr adaptivity with applications in numerical ocean modelling. Ocean Model 10(1-2):95-113 · doi:10.1016/j.ocemod.2004.07.007
[240] Piomelli, U.; Galperin, B. (ed.); Orszag, SA (ed.), Application of LES in engineering: an overview, 119-137 (1993), Cambridge
[241] Pironneau O, Liou J, Tezduyar T (1992) Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains. Comput Methods Appl Mech Eng 100:117-141 · Zbl 0761.76073 · doi:10.1016/0045-7825(92)90116-2
[242] Priestley A (1992) The Taylor-Galerkin method for the shallow-water equations on the sphere. Mon Weather Rev 120:3003-3015 · doi:10.1175/1520-0493(1992)120<3003:TTMFTS>2.0.CO;2
[243] Proctor FH (1988) The terminal area simulation system, volume I: theoretical formulation. Tech. rep., NASA, Contractor Report 4046, DOT/FAA/PM-85/50 · Zbl 0279.65090
[244] Prusa JM, Smolarkiewicz PK, Wyszogrodzki AA (2008) EULAG, a computational model for multiscale flows. Comput Fluids 37:1193-1207 · Zbl 1237.76107 · doi:10.1016/j.compfluid.2007.12.001
[245] Qaddouri A, Pudykiewicz J, Tanguay M, Girard C, Coté J (2012) Experiments with different discretizations for the shallow-water equations on a sphere. Q J R Meteorol Soc 138:989-1003 · doi:10.1002/qj.976
[246] Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics, texts in applied mathematics, 1st edn. Springer, Berlin · Zbl 0957.65001
[247] Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer, Berlin · Zbl 0803.65088
[248] Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Tech. Rep. 73, Los Alamos Scientific Laboratory—LA-UR-73-479 · Zbl 1391.76196
[249] Restelli M, Giraldo FX (2009) A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM J Sci Comput 31:2231-2257 · Zbl 1405.65127 · doi:10.1137/070708470
[250] Richardson L (1922) Weather prediction by numerical process, 1st edn. Cambridge University Press, Cambridge · JFM 48.0629.07
[251] Rispoli F, Saavedra R (2006) A stabilized finite element method based on sgs models for compressible flows. Comput Methods Appl Mech Eng 196:652-664 · Zbl 1120.76331 · doi:10.1016/j.cma.2006.07.006
[252] Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flow with v-sgs stabilization and \[yz\beta\] yzβ shock capturing. Int J Numer Methods Fluids 54:695-706 · Zbl 1207.76104 · doi:10.1002/fld.1447
[253] Ritz w (1909) über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik. J Reine Angew Math 135:1-61 · JFM 39.0449.01
[254] Ronquist EM (1996) Convection treatment using spectral elements of different order. Int J Numer Methods Fluids 22:241-264 · Zbl 0863.76059 · doi:10.1002/(SICI)1097-0363(19960229)22:4<241::AID-FLD350>3.0.CO;2-N
[255] Rood RB, Space G, Earth DOTG, Lyster P, Sawyer W, Takacs LL (1997) Design of the goddard earth observing system (geos) parallel general circulation model (gcm) · Zbl 0536.65071
[256] Room R (2001) Nonhydrostatic adiabatic kernel for hirlam. Part i: Fundamentals of nonhydrostatic dynamics in pressure-related coordinates. Tech. Rep. 25, HIRLAM Technical Report—MeteoFr and Consortium
[257] Room R (2002) Nonhydrostatic adiabatic kernel for hirlam. Part III: semi-implicit eulerian scheme. Tech. Rep. 55, HIRLAM Technical Report—MeteoFr and Consortium
[258] Rosenberg D, Fournier A, Fischer P, Pouquet A (2006) Geophysical-astrophysical spectral-element adaptive refinement (gaspar): object-oriented h-adaptive fluid dynamics simulation. J Comput Phys 215:59-80 · Zbl 1140.86300 · doi:10.1016/j.jcp.2005.10.031
[259] Russell WS, Eiseman PR (1998) A boundary conforming structured grid for global ocean circulation studies. Int J Numer Methods Fluids 28:761-788 · Zbl 0932.76076 · doi:10.1002/(SICI)1097-0363(19981015)28:5<761::AID-FLD696>3.0.CO;2-W
[260] Sagaut P (2000) Large eddy simulation for incompressible flows. An introduction. Springer, Berlin · Zbl 0964.76002
[261] Saito K, Fujita T, Yamada Y, Ishida JI, Kumagai Y, Aranami K, Ohmori S, Nagasawa R, Kumagai S, Muroi C, Kato T, Erro H, Yamazaki Y (2006) The operational JMA nonhydrostatic mesoscale model. Mon Weather Rev 134:1266-1298 · doi:10.1175/MWR3120.1
[262] Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (nicam) for global cloud resolving simulations. J Comput Phys 227:3486-3514 · Zbl 1132.86311 · doi:10.1016/j.jcp.2007.02.006
[263] Schar C, Leuenberger D, Fuhrer O, Luthic D, Girard C (2002) A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon Weather Rev 130:2459-2480 · doi:10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2
[264] Schwanenberg D, Kiem R, Kongeter J (2000) Discontinuous Galerkin method for the shallow water equations. Springer, Heidelberg, pp 289-309 · Zbl 1041.76512
[265] Sert C, Beskok A (2006) Spectral element formulations on non-conforming grids: a comparative study of pointwise matching and integral projection methods. J Comput Phys 211(1):300-325 · Zbl 1120.65338 · doi:10.1016/j.jcp.2005.05.019
[266] Shahbazi K, Fischer PF, Ethier CR (2007) A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations. J Comput Phys 222(1):391-407 · Zbl 1216.76034 · doi:10.1016/j.jcp.2006.07.029
[267] Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput Methods Appl Mech Eng 89:141-291 · Zbl 0838.76040 · doi:10.1016/0045-7825(91)90041-4
[268] Simmons A, Burridge D (1981) An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Weather Rev 109:758-766 · doi:10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2
[269] Simons T (1968) A three-dimensional spectral prediction equation. J Atmos Sci 127:1-27
[270] Skamarock W, Klemp J (1993) Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow. Mon Weather Rev 121:788-804 · doi:10.1175/1520-0493(1993)121<0788:AGRFTD>2.0.CO;2
[271] Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2007) A description of the advanced research WRF version 2. Tech. Rep. 468, NCAR TN STR
[272] Skamarock W, Oliger J, Street RL (1989) Adaptive grid refinement for numerical weather prediction. J Comput Phys 80(1):27-60 · Zbl 0661.76021 · doi:10.1016/0021-9991(89)90089-2
[273] Skamarock WC, Klemp JB, Duda MG, Fowler LD, Park SHH, Ringler TD (2012) A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon Weather Rev 140(9):3090-3105 · doi:10.1175/MWR-D-11-00215.1
[274] Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiement. Mon Weather Rev 91:99-164 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[275] Smolarkiewicz PK, Szmelter J, Wyszogrodzki AA (2013) An unstructured-mesh atmospheric model for nonhydrostatic dynamics. J Comput Phys 254:184-199 · Zbl 1349.86013 · doi:10.1016/j.jcp.2013.07.027
[276] Soong S, Ogura Y (1973) A comparison between axisymmetric abd slab-symmetric cumulus cloud models. J. Atmos. Sci. 30:879-893 · doi:10.1175/1520-0469(1973)030<0879:ACBAAS>2.0.CO;2
[277] Soto O, Lohner R, Camelli F (2003) A linelet preconditioner for incompressible flow solvers. Int J Numer Methods Heat Fluid Flow 13:133-147 · Zbl 1059.76037 · doi:10.1108/09615530310456796
[278] St-Cyr A, Jablonowski C, Dennis JM, Tufo HM, Thomas SJ (2008) A comparison of two shallow-water models with nonconforming adaptive grids. Mon Weather Rev 136:1898-1922 · doi:10.1175/2007MWR2108.1
[279] Staniforth A (1984) The application of the finite-element method to meteorological simulations—a review. Int J Numer Methods Fluids 4:1-12 · Zbl 0538.76051 · doi:10.1002/fld.1650040102
[280] Staniforth AN, Mitchell HL (1978) A variable-resolution finite-element technique for regional forecasting with the primitive equations. Mon Weather Rev 106:439-447 · doi:10.1175/1520-0493(1978)106<0439:AVRFET>2.0.CO;2
[281] Steppeler J, Bitzer H, Bonaventura L (2002) Nonhydrostatic atmospheric modelling using a z-coordinate representation. Mon Weather Rev 130:2143-2149 · doi:10.1175/1520-0493(2002)130<2143:NAMUAZ>2.0.CO;2
[282] Steppeler J, Hess R, Schattler U, Bonaventura L (2003) Review of numerical methods for nonhydrostatic weather prediction models. Meteorol Atmos Phys 82:287-301 · doi:10.1007/s00703-001-0593-8
[283] Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Ras S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roechner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146-172 · doi:10.1002/jame.20015
[284] Straka J, Wilhelmson R, Wicker L, Anderson J, Droegemeier K (1993) Numerical solution of a nonlinear density current: a benchmark solution and comparisons. Int J Numer Methods Fluids 17:1-22 · doi:10.1002/fld.1650170103
[285] Strang G, Fix GJ (1973) An analysis of the finite element method, vol 212. Wellesley-Cambridge, Wellesley · Zbl 0356.65096
[286] Sundqvist H (1976) On vertical interpolation and truncation in connection with the use of sigma system models. Atmosphere 14:37-52
[287] Tabata M (1978) Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J Math Kyoto Univ 18:327-351 · Zbl 0391.65038
[288] Tabata M (1979) Some applications of the upwind finite element method. Theor Appl Mech 27:277-282
[289] Tabata M (1985) Symmetric finite element approximations for convection-diffusion problems. Theor Appl Mech 33:445-453 · Zbl 0612.76096
[290] Tadmor E (1989) Convergence of spectral methods for nonlinear conservation laws. SIAM J Numer Anal 26:30-44 · Zbl 0667.65079 · doi:10.1137/0726003
[291] Tanguay M, Robert A, Laprise R (1990) A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon Weather Rev 118:1970-1980 · doi:10.1175/1520-0493(1990)118<1970:ASISLF>2.0.CO;2
[292] Tapp MC, White PW (1976) A non-hydrostatic mesoscale model. Q J R Meteorol Soc 102:277-296 · doi:10.1002/qj.49710243202
[293] Tatsumi Y (1983) An economical explicit time integration scheme for a primitive model. J Meteorol Soc Jpn 61:269-287
[294] Taylor M, Tribbia J, Iskandarani M (1997) The spectral element method for the shallow water equations on the sphere. J Comput Phys 130:92-108 · Zbl 0868.76072 · doi:10.1006/jcph.1996.5554
[295] Tezduyar T, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with \[yz\beta\] yzβ shock-capturing. Comput Fluids 36:147-159 · Zbl 1127.76029 · doi:10.1016/j.compfluid.2005.07.009
[296] Thomas SJ, Loft R (2005) The NCAR spectral element climate dynamical core: semi-implicit Eulerian formulation. J Sci Comput 25:307-322 · Zbl 1203.86013 · doi:10.1007/s10915-004-4646-2
[297] Thompson JF, Mastin CW, Thames FC (1974) Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. J Comput Phys 15(3):299-319 · Zbl 0283.76011 · doi:10.1016/0021-9991(74)90114-4
[298] Thompson JF, Warsi ZUA, Mastin CW (1985) Numerical Grid Generation: foundations and applications. North-Holland, Amsterdam · Zbl 0598.65086
[299] Thuburn J (2011) Some basic dynamics relevant to the design of atmospheric model dynamical cores. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric Models, Lecture notes in computational science and engineering, vol 80. Springer, pp 3-27
[300] Thuburn J (2011) Vertical discretizations: some basic ideas. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models, Lecture notes in computational science and engineering, vol 80. Springer, pp 59-74
[301] Thuburn J, Cotter CJ (2015) A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes. J Comput Phys 290:274-297 · Zbl 1349.76273
[302] Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin · Zbl 0923.76004 · doi:10.1007/978-3-662-03915-1
[303] Tumolo G, Bonaventura L, Restelli M (2013) A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations. J Comput Phys 232:46-67 · Zbl 1291.65305 · doi:10.1016/j.jcp.2012.06.006
[304] Ullrich P, Jablonowski C (2012) MCore: a non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods. J Comput Phys 231(15):5078-5108 · Zbl 1247.86007 · doi:10.1016/j.jcp.2012.04.024
[305] Untch A, Hortal M (2004) A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ecmwf forecast model. Q J R Meteorol Soc 130:1505-1530 · doi:10.1256/qj.03.173
[306] van der Bos F, van der Vegt JJ, Geurts BJ (2007) A multiscale formulation for compressible turbulent flow suitable for general variational discretization techniques. Comput Methods Appl Mech Eng 196:2863-2875 · Zbl 1177.76148 · doi:10.1016/j.cma.2006.12.005
[307] Vandeven H (1991) Family of spectral filters for discontinuous problems. J Sci Comput 6:159-192 · Zbl 0752.35003
[308] Vázquez M, Houzeaux G, Korik S, Artigues A, Aguado-Sierra J, Aris R, Mira D, Calet H, Cucchietti F, Owen H, Taha A, Cela JM (2014) Alya: towards exascale for engineering simulation codes. arXiv:1404.4881
[309] Walko RL, Avissar R (2008) The ocean-land-atmosphere model (OLAM). Part I: shallow-water tests. Mon Weather Rev 136:4033-4044 · doi:10.1175/2008MWR2522.1
[310] Walko RL, Avissar R (2008) The ocean-land-atmosphere model (OLAM). Part II: formulation and tests of the nonydrostatic dynamic core. Mon Weather Rev 136:4045-4064 · doi:10.1175/2008MWR2523.1
[311] Wan H, Giorgetta MA, Zängl G, Restelli M, Majewski D, Bonaventura L, Fröhlich K, Reinert D, Rípodas P, Kornblueh L (2013) The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—part 1: formulation and performance of the baseline version. Geosci Model Dev Disc 6:59-119 · doi:10.5194/gmdd-6-59-2013
[312] Warburton TC, Karniadakis GE (1999) A discontinuous Galerkin method for the viscous MHD equations. J Comput Phys 152(2):608-641 · Zbl 0954.76051 · doi:10.1006/jcph.1999.6248
[313] Weller H, Shahrokhi A (2014) Curl free pressure gradients over orography in a solution of the fully compressibe Euler equations with implicit treatment of acoustic and gravity waves. Tech. rep., U. Reading, UK
[314] Weller H, Lock SJ, Wood N (2013) Runge-Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations. J Comput Phys 252:365-381 · Zbl 1349.86015 · doi:10.1016/j.jcp.2013.06.025
[315] Weller H, Ringler T, Piggott M, Wood N (2010) Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bull Am Meteorol Soc 91:105-108 · doi:10.1175/2009BAMS2907.1
[316] Weller H, Weller H, Fournier A (2009) Voronoi, Delaunay, and block-structured mesh refinement for solution of the shallow-water equations on the sphere. Mon Weather Rev 137:4208-4224 · doi:10.1175/2009MWR2917.1
[317] White AA, Hoskins BJ, Roulstone I, Staniforth A (2005) Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q J R Meteorol Soc 131:2081-2107 · doi:10.1256/qj.04.49
[318] Wicker L, Skamarock W (1998) A time-splitting scheme for the elastic equations incorporating second-order Runge-Kutta time differencing. Mon Weather Rev 126:1992-1999 · doi:10.1175/1520-0493(1998)126<1992:ATSSFT>2.0.CO;2
[319] Wicker L, Skamarock W (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130:2088-2097 · doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
[320] Wilcox LC, Stadler G, Burstedde C, Ghattas O (2010) A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J Comput Phys 229(24):9373-9396 · Zbl 1427.74071 · doi:10.1016/j.jcp.2010.09.008
[321] Williamson D (2007) The evolution of dynamical cores for global atmospheric models. J Meteorol Soc Jpn 85B:241-269 · doi:10.2151/jmsj.85B.241
[322] Wood N, Staniforth A, White A, Allen T, Diamantakis M, Gross M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn J (2014) An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q J R Meteorol Soc 140:1505-1520 · doi:10.1002/qj.2235
[323] Xue M, Droegemeier K, Wong V (2000) The advanced regional prediction system (arps)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part i: model dynamics and verification. Meteorol Atmos Phys 75:161-193 · doi:10.1007/s007030070003
[324] Yang H (1985) Finite element structural analysis, international series in civil engineering and engineering mechanics, 1st edn. Prentice-Hall, Englewood Cliffs
[325] Yang X, Hu J, Chen D, Zhang H, Shen X, Chen J, Ji L (2008) Verification of GRAPES unified global and regional numerical weather prediction model dynamic core. Chin Sci Bull 53:3458-3464
[326] Yeh K, Coté J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (2002) The CMC-MRB global environmental multiscale GEM model. Part III: nonhydrostatic formulation. Mon Weather Rev 130:339-356 · doi:10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2
[327] Yelash L, Müller A, Lukáčová-Medvid’ová M, Giraldo FX, Wirth V (2014) Adaptive discontinuous evolution Galerkin method for dry atmospheric flow. J Comput Phys 268:106-133 · Zbl 1349.76292 · doi:10.1016/j.jcp.2014.02.034
[328] Yu M, Giraldo FX, Peng M, Wang ZJ (2014) Localized artificial viscosity stabilization of discontinuous Galerkin m, ehods for nonhydrostatic mesoscale atmospheric modeling. Technical report, Kansas University
[329] Zhang DL, Chang HR, Seaman NL, Warner TT, Fritsch JM (1986) A two-way interactive nesting procedure with variable terrain resolution. Mon Weather Rev 114:1330-1339 · doi:10.1175/1520-0493(1986)114<1330:ATWINP>2.0.CO;2
[330] Zhao M, Held I, Lin S, Vecchi G (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653-6678 · doi:10.1175/2009JCLI3049.1
[331] Zienkiewcz O, Nithiarasu P, Codina R, Vázquez M, Ortiz P (1999) The characteristic-based split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Methods Fluids 31:359-392 · Zbl 0985.76069 · doi:10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
[332] Zienkiewicz O, Codina R (1995) A general algorithm for compressible and incompressible flow—part i. The split, characteristic-based scheme. Int J Numer Methods Fluids 20:869-885 · Zbl 0837.76043 · doi:10.1002/fld.1650200812
[333] Zienkiewicz O, Taylor R, Nithiarasu P (2005) The finite element method for fluid dynamics, 6th edn. Elsevier, Amsterdam · Zbl 1278.76006
[334] Zingan V, Guermond JL, Morel J, Popov B (2013) Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput Methods Appl Math Eng 253:479-490 · Zbl 1297.76109 · doi:10.1016/j.cma.2012.08.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.