Arias-Valero, Juan Sebastián; Lluis-Puebla, Emilio Some remarks on hypergestural homology of spaces and its relation to classical homology. (English) Zbl 1471.00006 J. Math. Music 14, No. 3, 245-265 (2020). The mathematical theory of musical gestures is an example of an emerging research field that starts from performance practice in the arts. Performers’ gestures are necessary to obtain sounds from musical instruments. A gesture is the embodiment of a digraph in a topological space. Starting from Mazzola’s definition of gestures and hypergestures (gestures of gestures), in this article Arias-Valero and Lluis-Puebla provide geometric and physical boundaries of hypergestures. The authors also investigate the relationship between “hypergestural homology and classical cubical homology and prove that in many cases […] hypergestural homologies is invariant under homotopy equivalence of spaces” (p. 245). The authors start with the definition of semi-cubical categories and semi-cubical modules as functors. Then, they construct the cubical homology and the standard cube functor from semi-cubical categories to topological spaces. The authors review topological gestures and hypergestures, presenting them as sequences to build semi-cubical modules for homology. Finally, the authors identify hypergestural homology as a cubical homology, distinguishing different notions of boundary for gestures (Mazzola’s, geometric, natural). According to the authors, “gestures and hypergestures are just sequences of singular cubes satisfying some conditions” (p, 262). The authors conclude the article by discussing how their computations could be applied to piano playing, conducting gestures (see Mannone’s research), or any other discipline involving performance. Reviewer: Maria Mannone (Palermo) MSC: 00A65 Mathematics and music 18G99 Homological algebra in category theory, derived categories and functors Keywords:homology; mathematical theory of musical gestures Software:HexaChord PDF BibTeX XML Cite \textit{J. S. Arias-Valero} and \textit{E. Lluis-Puebla}, J. Math. Music 14, No. 3, 245--265 (2020; Zbl 1471.00006) Full Text: DOI References: [1] Agustín-Aquino, Octavio A., Julien Junod, and Guerino Mazzola. 2015. Computational Counterpoint Worlds: Mathematical Theory, Software, and Experiments (Computational Music Science). Cham: Springer International Publishing. · Zbl 1318.00002 [2] Arias, Juan S. 2017a. “Abstract Gestures: A Unifying Concept in Mathematical Music Theory.” In Mathematics and Computation in Music, edited by Octavio A. Agustín-Aquino, Emilio Lluis-Puebla, and Mariana Montiel, 183-200. Cham: Springer International Publishing. · Zbl 1456.00056 [3] Arias, Juan S. 2017b. “Gestures on Locales and Localic Topoi.” In The Musical-Mathematical Mind: Patterns and Transformations, edited by Gabriel Pareyon, Silvia Pina-Romero, Octavio A. Agustín-Aquino, and Emilio Lluis-Puebla, 29-39. Cham: Springer International Publishing. [4] Arias, Juan S. 2018a. “Gesture Theory: Topos-Theoretic Perspectives and Philosophical Framework.” PhD thesis, Universidad Nacional de Colombia. http://bdigital.unal.edu.co/63632/1/Thesisfinal.pdf. [5] Arias, Juan S. 2018b. “Spaces of Gestures are Function Spaces.” Journal of Mathematics and Music 12 (2): 89-105. doi: 10.1080/17459737.2018.1496489 · Zbl 1406.00001 [6] Bergomi, Mattia G. 2015. “Dynamical and Topological Tools for (Modern) Music Analysis.” PhD thesis, Université Pierre et Marie Curie-Paris VI. [7] Bigo, Louis, and Moreno Andreatta. 2017. “Topological Structures in Computer-Aided Music Analysis.” In Computational Music Analysis, edited by David Meredith, 57-80. Cham: Springer. · Zbl 1375.00067 [8] Bigo, Louis, and Moreno Andreatta. 2019. “Filtration of Pitch-Class Sets Complexes.” In Mathematics and Computation in Music, edited by Mariana Montiel, Francisco Gomez-Martin, and Octavio A. Agustín-Aquino, 213-226. Cham: Springer International Publishing. · Zbl 1456.00060 [9] Dieudonné, Jean. 1989. A History of Algebraic and Differential Topology 1900-1960. Boston: Birkhäuser. · Zbl 0673.55002 [10] Grothendieck, Alexander. 1957. “Sur Quelques Points D”Algèbre Homologique.” Tôhoku Mathematical Journal 9 (2): 119-121. doi: 10.2748/tmj/1178244839 · Zbl 0118.26104 [11] Hatcher, Allen. 2002. Algebraic Topology. Cambridge: Cambridge University Press. · Zbl 1044.55001 [12] Hilton, P. J., and S. Wylie. 1967. Homology Theory: An Introduction to Algebraic Topology. London: Cambridge University Press. · Zbl 0163.17803 [13] Kubota, Akihiro, Hirokazu Hori, Makoto Naruse, and Fuminori Akiba. 2017. “A New Kind of Aesthetics-The Mathematical Structure of the Aesthetic.” Philosophies 2 (3): 1-14. [14] Lascabettes, Paul. 2018. “Homologie Persistante Appliquée à la Reconnaissance de Genres Musicaux.” Master’s thesis, École Normale Supérieure Paris-Saclay. [15] Lluis-Puebla, Emilio E. 2005. Álgebra Homológica, Cohomología de Grupos y K-Teoría Algebraica Clásica. Textos. Vol. 5. México: Sociedad Matemática Mexicana. · Zbl 1104.18301 [16] Mac Lane, Saunders. 1998. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer-Verlag. · Zbl 0906.18001 [17] Mac Lane, Saunders, and Ieke Moerdijk. 1992. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext. New York: Springer Science. · Zbl 0822.18001 [18] Mannone, Maria. 2018a. “Introduction to Gestural Similarity in Music. An Application of Category Theory to the Orchestra.” Journal of Mathematics and Music 12 (2): 63-87. doi: 10.1080/17459737.2018.1450902 · Zbl 1469.00014 [19] Mannone, Maria. 2018b. “Knots, Music and DNA.” Journal of Creative Music Systems 2 (2). doi: 10.5920/jcms.2018.02 · Zbl 1469.00014 [20] Mannone, Maria, and Luca Turchet. 2019. “Shall We (Math and) Dance?.” In Mathematics and Computation in Music, edited by Mariana Montiel, Francisco Gomez-Martin, and Octavio A. Agustín-Aquino, 84-97. Cham: Springer International Publishing. · Zbl 1448.00018 [21] Mazzola, Guerino. 2009. “Categorical Gestures, the Diamond Conjecture, Lewin”s Question, and the Hammerklavier Sonata.” Journal of Mathematics and Music 3 (1): 31-58. doi: 10.1080/17459730902910480 · Zbl 1180.00014 [22] Mazzola, Guerino. 2012. “Singular Homology on Hypergestures.” Journal of Mathematics and Music 6 (1): 49-60. doi: 10.1080/17459737.2012.680311 · Zbl 1328.00101 [23] Mazzola, Guerino. 2018. The Topos of Music (Computational Music Science). 2nd ed. Cham: Springer International Publishing. · Zbl 1384.00045 [24] Mazzola, Guerino, and Moreno Andreatta. 2007. “Diagrams, Gestures and Formulae in Music.” Journal of Mathematics and Music 1 (1): 23-46. doi: 10.1080/17459730601137716 · Zbl 1139.00006 [25] Mazzola, Guerino, Stefan Göller, Stefan Müller, and Shlomo Dubnov. 2002. The Topos of Music: Geometric Logic of Concepts, Theory, and Performance. Basel: Birkhäuser Verlag. [26] Milnor, John. 1957. “The Geometric Realization of a Semi-Simplicial Complex.” Annals of Mathematics 65 (2): 357-362. doi: 10.2307/1969967 · Zbl 0078.36602 [27] Poincaré, Henri. 1895. “Analysis Situs.” Journal de L’École Polythechnique 1, 1-121. [28] Rotman, Josep J. 2009. An Introduction to Homological Algebra. Universitext. New York: Springer Science. · Zbl 1157.18001 [29] Sethares, William A., and Ryan Budney. 2014. “Topology of Musical Data.” Journal of Mathematics and Music 8 (1): 73-92. doi: 10.1080/17459737.2013.850597 · Zbl 1327.00026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.