Computer-aided cluster expansion: an efficient algebraic approach for open quantum many-particle systems. (English) Zbl 1376.81081

Summary: We introduce an equation of motion approach that allows for an approximate evaluation of the time evolution of a quantum system, where the algebraic work to derive the equations of motion is done by the computer. The introduced procedures offer a variety of different types of approximations applicable for finite systems with strong coupling as well as for arbitrary large systems where augmented mean-field theories like the cluster expansion can be applied.


81V70 Many-body theory; quantum Hall effect
68W30 Symbolic computation and algebraic computation
81-08 Computational methods for problems pertaining to quantum theory
81-04 Software, source code, etc. for problems pertaining to quantum theory


FORM; EoM_main.frm
Full Text: DOI


[1] Hoyer, W.; Kira, M.; Koch, S. W., Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures, Phys. Rev. B, 67, 15, 155113 (2003)
[2] Witthaut, D.; Trimborn, F.; Hennig, H.; Kordas, G.; Geisel, T.; Wimberger, S., Beyond mean-field dynamics in open Bose-Hubbard chains, Phys. Rev. A, 83, 6, 063608 (2011)
[3] Richter, M.; Carmele, A.; Sitek, A.; Knorr, A., Few-photon model of the optical emission of semiconductor quantum dots, Phys. Rev. Lett., 103, 8, 087407 (2009)
[4] Leymann, H.; Foerster, A.; Jahnke, F.; Wiersig, J.; Gies, C., Sub- and superradiance in nanolasers, Phys. Rev. Appl., 4, 4, 044018 (2015)
[5] Jahnke, F.; Gies, C.; Aßmann, M.; Bayer, M.; Leymann, H. A.M.; Foerster, A.; Wiersig, J.; Schneider, C.; Kamp, M.; Höfling, S., Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers, Nat. Commun., 7, 11540 (2016)
[8] Gies, C.; Wiersig, J.; Lorke, M.; Jahnke, F., Semiconductor model for quantum-dot-based microcavity lasers, Phys. Rev. A, 75, 1, 013803 (2007)
[9] Leymann, H. A.M.; Foerster, A.; Wiersig, J., Expectation value based equation-of-motion approach for open quantum systems: A general formalism, Phys. Rev. B, 89, 8, 085308 (2014)
[10] Leymann, H. A.M.; Foerster, A.; Wiersig, J., Expectation value based cluster expansion, Phys. Status Solidi (C), 10, 9, 1242-1245 (2013)
[11] Breuer, H.-P.; Petruccione, F., The Theory of Open Quantum Systems (2002), Oxford University Press
[12] Florian, M.; Gies, C.; Jahnke, F.; Leymann, H. A.M.; Wiersig, J., Equation-of-motion technique for finite-size quantum-dot systems: Cluster expansion method, Phys. Rev. B, 87, 16, 165306 (2013)
[13] Carmichael, P. H.J., Dissipation in quantum mechanics: The master equation approach, (Statistical Methods in Quantum Optics 1. Statistical Methods in Quantum Optics 1, Texts and Monographs in Physics (1999), Springer: Springer Berlin, Heidelberg), 1-28
[14] Fricke, J., Transportgleichungen für Quantenmechanische Vielteilchensysteme (1996), Cuvillier
[16] Mølmer, K., Optical coherence: A convenient fiction, Phys. Rev. A, 55, 4, 3195-3203 (1997)
[17] Baer, N.; Schulz, S.; Gartner, P.; Schumacher, S.; Czycholl, G.; Jahnke, F., Influence of symmetry and Coulomb correlation effects on the optical properties of nitride quantum dots, Phys. Rev. B, 76, 075310 (2007)
[18] Aßmann, M.; Veit, F.; Bayer, M.; Poel, M.v.d.; Hvam, J. M., Higher-order photon bunching in a semiconductor microcavity, Science, 325, 5938, 297-300 (2009)
[19] Avenhaus, M.; Laiho, K.; Chekhova, M. V.; Silberhorn, C., Accessing higher order correlations in quantum optical states by time multiplexing, Phys. Rev. Lett., 104, 6, 063602 (2010)
[20] Stevens, M. J.; Baek, B.; Dauler, E. A.; Kerman, A. J.; Molnar, R. J.; Hamilton, S. A.; Berggren, K. K.; Mirin, R. P.; Nam, S. W., High-order temporal coherences of chaotic and laser light, Opt. Express, 18, 2, 1430-1437 (2010)
[21] Wiersig, J.; Gies, C.; Jahnke, F.; Aßmann, M.; Berstermann, T.; Bayer, M.; Kistner, C.; Reitzenstein, S.; Schneider, C.; Höfling, S.; Forchel, A.; Kruse, C.; Kalden, J.; Hommel, D., Direct observation of correlations between individual photon emission events of a microcavity laser, Nature, 460, 7252, 245-249 (2009)
[22] Leymann, H. A.M.; Hopfmann, C.; Albert, F.; Foerster, A.; Khanbekyan, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; Reitzenstein, S., Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition, Phys. Rev. A, 87, 5, 053819 (2013)
[23] Rice, P. R.; Carmichael, H. J., Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy, Phys. Rev. A, 50, 5, 4318-4329 (1994)
[24] Loudon, R., The Quantum Theory of Light (2000), Oxford University Press · Zbl 1009.81003
[25] Garrison, J.; Chiao, R., Quantum Optics (2014), Oxford University Press
[26] Musiał, A.; Hopfmann, C.; Heindel, T.; Gies, C.; Florian, M.; Leymann, H. A.M.; Foerster, A.; Schneider, C.; Jahnke, F.; Höfling, S.; Kamp, M.; Reitzenstein, S., Correlations between axial and lateral emission of coupled quantum dot-micropillar cavities, Phys. Rev. B, 91, 20, 205310 (2015)
[27] Chow, W. W.; Jahnke, F.; Gies, C., Emission properties of nanolasers during the transition to lasing, Light Sci. Appl., 3, 8, 201 (2014)
[28] Watt, A., Beginning Regular Expressions (2005), Wiley India Pvt. Limited
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.