×

Fourier-Taylor approximation of unstable manifolds for compact maps: numerical implementation and computer-assisted error bounds. (English) Zbl 1383.37066

Summary: We develop and implement a semi-numerical method for computing high-order Taylor approximations of unstable manifolds for hyperbolic fixed points of compact infinite-dimensional maps. The method can follow folds in the embedding and describes precisely the dynamics on the manifold. In order to ensure the accuracy of our computations in spite of the many truncation and round-off errors, we develop a posteriori error bounds for the approximations. Deliberate control of round-off errors (using interval arithmetic) in conjunction with explicit analytical estimates leads to mathematically rigorous computer-assisted theorems describing precisely the truncation errors for our approximation of the invariant manifold. The method is applied to the Kot-Schaffer model of population dynamics with spatial dispersion.

MSC:

37L65 Special approximation methods (nonlinear Galerkin, etc.) for infinite-dimensional dissipative dynamical systems
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
34C45 Invariant manifolds for ordinary differential equations
37D10 Invariant manifold theory for dynamical systems
65P40 Numerical nonlinear stabilities in dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Arioli and H. Koch. Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal., 197(3):1033-1051, 2010. · Zbl 1231.35016 · doi:10.1007/s00205-010-0309-7
[2] G. Arioli and H. Koch. Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst., 9(3):1119-1133, 2010. · Zbl 1298.37071 · doi:10.1137/10078298X
[3] G. Arioli and P. Zgliczyński. Symbolic dynamics for the Hénon-Heiles Hamiltonian on the critical level. J. Differential Equations, 171(1):173-202, 2001. · Zbl 1018.37006 · doi:10.1006/jdeq.2000.3835
[4] M. Breden, J.-P. Lessard, and J. D. Mireles James. Computation of maximal local (un)stable manifold patches by the parameterization method. Indag. Math. (N.S.), 27(1):340-367, 2016. · Zbl 1336.65197 · doi:10.1016/j.indag.2015.11.001
[5] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J., 52(2):283-328, 2003. · Zbl 1034.37016 · doi:10.1512/iumj.2003.52.2245
[6] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds. II. Regularity with respect to parameters. Indiana Univ. Math. J., 52(2):329-360, 2003. · Zbl 1034.37017 · doi:10.1512/iumj.2003.52.2407
[7] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds. III. Overview and applications. J. Differential Equations, 218(2):444-515, 2005. · Zbl 1101.37019 · doi:10.1016/j.jde.2004.12.003
[8] S. Day, O. Junge, and K. Mischaikow. A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems. SIAM J. Appl. Dyn. Syst., 3(2):117-160 (electronic), 2004. · Zbl 1059.37068
[9] S. Day and W. D. Kalies. Rigorous computation of the global dynamics of integrodifference equations with smooth nonlinearities. SIAM J. Numer. Anal., 51(6):2957-2983, 2013. · Zbl 1288.37030 · doi:10.1137/120903129
[10] S. Day, J.-P. Lessard, and K. Mischaikow. Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424 (electronic), 2007. · Zbl 1151.65074
[11] R. de la Llave and J. D. Mireles James. Connecting orbits for compact infinite dimensional maps: computer assisted proofs of existence. SIAM J. Appl. Dyn. Sys., 15(2):1268-1323, 2016. · Zbl 1343.37078
[12] R. de la Llave, A. Olvera, and N. P. Petrov. Combination laws for scaling exponents and relation to the geometry of renormalization operators: the principle of approximate combination of scaling exponents. J. Stat. Phys., 143(5):889-920, 2011. · Zbl 1242.82017 · doi:10.1007/s10955-011-0211-1
[13] J.-P. Eckmann, H. Koch, and P. Wittwer. A computer-assisted proof of universality for area-preserving maps. Mem. Amer. Math. Soc., 47(289):vi+122, 1984. · Zbl 0528.58033
[14] D. Gaidashev and T. Johnson. A numerical study of infinitely renormalizable area-preserving maps. Dyn. Syst., 27(3):283-301, 2012. · Zbl 1255.37016 · doi:10.1080/14689367.2012.673559
[15] D. Gaidashev and H. Koch. Period doubling in area-preserving maps: an associated one-dimensional problem. Ergodic Theory Dynam. Systems, 31(4):1193-1228, 2011. · Zbl 1225.37053 · doi:10.1017/S0143385710000283
[16] D. G. Gaidashev. Period doubling renormalization for area-preserving maps and mild computer assistance in contraction mapping principle. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21(11):3217-3230, 2011. · Zbl 1258.37047 · doi:10.1142/S0218127411030477
[17] Z. Galias and P. Zgliczyński. Infinite-dimensional Krawczyk operator for finding periodic orbits of discrete dynamical systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17(12):4261-4272, 2007. · Zbl 1148.37041 · doi:10.1142/S0218127407019937
[18] M. Gameiro and J.-P. Lessard. Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Differential Equations, 249(9):2237-2268, 2010. · Zbl 1256.35196 · doi:10.1016/j.jde.2010.07.002
[19] M. Gameiro and J.-P. Lessard. Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates. SIAM J. Numer. Anal., 51(4):2063-2087, 2013. · Zbl 1277.65084 · doi:10.1137/110836651
[20] M. Gameiro, J.-P. Lessard, and K. Mischaikow. Validated continuation over large parameter ranges for equilibria of PDEs. Math. Comput. Simulation, 79(4):1368-1382, 2008. · Zbl 1166.65379 · doi:10.1016/j.matcom.2008.03.014
[21] A. Hungria, J.-P. Lessard, and J. D. Mireles James. Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comp., 85(299):1427-1459, 2016. · Zbl 1332.65114 · doi:10.1090/mcom/3046
[22] J. M. James. Matlab codes for “fourier-taylor approximation of unstable manfiolds for compact maps: Numerical implementation and computer assisted error bounds. http://cosweb1.fau.edu/ jmirelesjames/unstableManifoldCompactMapPage.html <RefTarget Address=”http://cosweb1.fau.edu/ · Zbl 1034.37017
[23] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. · Zbl 0836.47009
[24] H. Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. (Submitted)http://www.ma.utexas.edu/mp_arc/c/14/14-70.pdf, 2014. · Zbl 1323.65046
[25] H. Koch, A. Schenkel, and P. Wittwer. Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev., 38(4):565-604, 1996. · Zbl 0865.68111 · doi:10.1137/S0036144595284180
[26] O. E. Lanford, III. A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. (N.S.), 6(3):427-434, 1982. · Zbl 0487.58017
[27] J. D. Mireles-James. Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds. Indagationes Mathematicae, 2014. · Zbl 1359.37063
[28] J. D. Mireles James. Computer assisted error bounds for linear approximation of (un)stable manifolds and rigorous validation of higher dimensional transverse connecting orbits. Commun. Nonlinear Sci. Numer. Simul., 22(1-3):1102-1133, 2015. · Zbl 1329.37081 · doi:10.1016/j.cnsns.2014.08.010
[29] J. D. Mireles James and K. Mischaikow. Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps. SIAM J. Appl. Dyn. Syst., 12(2):957-1006, 2013. · Zbl 1330.37029 · doi:10.1137/12088224X
[30] R. E. Moore. Interval analysis. Prentice-Hall Inc., Englewood Cliffs, N.J., 1966. · Zbl 0176.13301
[31] R. E. Moore. Interval tools for computer aided proofs in analysis. In Computer aided proofs in analysis (Cincinnati, OH, 1989), volume 28 of IMA Vol. Math. Appl., pages 211-216. Springer, New York, 1991. · Zbl 0753.65036
[32] S. Rump. INTLAB - INTerval LABoratory. In T. Csendes, editor, Developments in Reliable Computing, pages 77-104. Kluwer Academic Publishers, Dordrecht, 1999. http://www.ti3.tu-harburg.de/rump/. · Zbl 0949.65046
[33] S. M. Rump. Verification methods: rigorous results using floating-point arithmetic. Acta Numer., 19:287-449, 2010. · Zbl 1323.65046 · doi:10.1017/S096249291000005X
[34] W. Tucker. Validated numerics. Princeton University Press, Princeton, NJ, 2011. A short introduction to rigorous computations. · Zbl 1231.65077
[35] J. B. Van den Berg, J. D. Mireles James, and C. Reinhardt. Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra. Journal of Nonlinear Science, 26:1055-1095, 2016. · Zbl 1360.37176 · doi:10.1007/s00332-016-9298-5
[36] D. Wilczak. Chaos in the Kuramoto-Sivashinsky equations—a computer-assisted proof. J. Differential Equations, 194(2):433-459, 2003. · Zbl 1050.37017 · doi:10.1016/S0022-0396(03)00104-9
[37] D. Wilczak. Symmetric heteroclinic connections in the Michelson system: a computer assisted proof. SIAM J. Appl. Dyn. Syst., 4(3):489-514 (electronic), 2005. · Zbl 1120.34033
[38] D. Wilczak. The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof. Found. Comput. Math., 6(4):495-535, 2006. · Zbl 1130.37415 · doi:10.1007/s10208-005-0201-2
[39] D. Wilczak. Symmetric homoclinic solutions to the periodic orbits in the Michelson system. Topol. Methods Nonlinear Anal., 28(1):155-170, 2006. · Zbl 1113.34032
[40] D. Wilczak and P. Zgliczynski. Heteroclinic connections between periodic orbits in planar restricted circular three-body problem—a computer assisted proof. Comm. Math. Phys., 234(1):37-75, 2003. · Zbl 1055.70005 · doi:10.1007/s00220-002-0709-0
[41] D. Wilczak and P. Zgliczyński. Period doubling in the Rössler system—a computer assisted proof. Found. Comput. Math., 9(5):611-649, 2009. · Zbl 1177.37083 · doi:10.1007/s10208-009-9040-x
[42] N. Yamamoto. A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal., 35(5):2004-2013 (electronic), 1998. · Zbl 0972.65084
[43] P. Zgliczynski. \[C^1\] C1 Lohner algorithm. Found. Comput. Math., 2(4):429-465, 2002. · Zbl 1049.65038 · doi:10.1007/s102080010025
[44] P. Zgliczyński. Covering relations, cone conditions and the stable manifold theorem. J. Differential Equations, 246(5):1774-1819, 2009. · Zbl 1185.37045 · doi:10.1016/j.jde.2008.12.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.