×

An efficient and robust GPGPU-parallelized contact algorithm for the combined finite-discrete element method. (English) Zbl 1507.74247

Summary: In this study, an efficient and robust GPGPU (general purpose graphic processing unit)-parallelized algorithm is proposed for contact force calculation for the three-dimensional combined finite-discrete element method (3D FDEM). The contact force model is energy-conserving and avoids the issues that the mesh-dependence of contact force in the original contact algorithm proposed by Munjiza. The contact force calculation is based on the determination of the geometrical features of the overlapped region between two particles, which can be easily obtained by performing the face-particle intersection calculations consecutively. The contact damping and contact friction are also implemented. Based on Compute Unified Device Architecture (CUDA), the proposed contact algorithm can be parallelized with much less thread unbalance and register usage than the existing energy-conserving contact algorithms due to the simplified computational process. Several numerical tests are performed to validate the efficiency and effectiveness of the proposed contact algorithm. The contact friction model is validated against theoretical solutions with a block sliding test, and the results show that the proposed contact algorithm outperforms the original contact algorithm in both normal and friction force evaluation. For both quasi-static and dynamic scenarios, the simulated results are in good agreement with those generated by the original contact algorithm, as well as the experimental measurements. The computational efficiency tests show that the computation time is linearly proportional to the number of potential contact pairs, and the speedup ratio of the parallelized version of proposed contact algorithm relative to the serial version of original contact algorithm can reach up to 565.1 (Nvidia Quadro GP100), which indicates the proposed contact algorithm is capable to be employed in the simulation of large-scale problems. Besides, the proposed contact algorithm can be applied to the cases where the polyhedrons with more than four vertexes are employed.

MSC:

74M15 Contact in solid mechanics
74M10 Friction in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Munjiza; Owen, D. R.J.; Bicanic, N., A combined finite-discrete element method in transient dynamics of fracturing solids, Eng. Comput., 12, 145-174 (1995) · Zbl 0822.73070
[2] Munjiza, A.; Rougier, E.; Knight, E. E., Large Strain Finite Element Method: A Practical Course (2015), John Wiley and Sons: John Wiley and Sons London, UK · Zbl 1402.74002
[3] Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.; Viswanathan, H., A generalized anisotropic deformation formulation for geomaterials, Comput. Part Mech., 3, 215-228 (2016)
[4] Rougier, E.; Munjiza, A.; Lei, Z.; Chau, V. T.; Knight, E. E.; Hunter, A.; Srinivasan, G., The combined plastic and discrete fracture deformation framework for fnite-discrete element methods, Internat. J. Numer. Methods Engrg., 121, 1020-1035 (2020)
[5] Lei, Z.; Bradley, C. R.; Munjiza, A.; Rougier, E.; Euser, B., A novel framework for elastoplastic behavior of anisotropic solids, Comput. Part Mech., 7, 823-838 (2020)
[6] Lei, Z.; Rougier, E.; Munjiza, A.; Viswanathan, H.; Knight, E. E., Simulation of discrete cracks driven by nearly incompressible fluid via 2D combined finite-discrete element method, Int. J. Numer. Anal. Methods Geomech., 1-20 (2019)
[7] Munjiza, A.; Rougier, E.; Zhou, L.; Knight, E. E., FSIS: a novel fluid-solid interaction solver for fracturing and fragmenting solids, Comput. Part Mech., 7, 1-28 (2020)
[8] Yan, C. Z.; Zheng, Y. C.; Huang, D. R.; Wang, G., A coupled contact heat transfer and thermal cracking model for discontinuous and granular media, Comput. Methods Appl. Mech. Engrg., 375, Article 113587 pp. (2021) · Zbl 1506.74086
[9] Yan, C. Z.; Wei, D. S.; Wang, G., Three-dimensional finite discrete element-based contact heat transfer model considering thermal cracking in continuous-discontinuous media, Comput. Methods Appl. Mech. Engrg., 388, Article 114228 pp. (2022) · Zbl 1507.74025
[10] Yan, C. Z.; Xie, X.; Ren, Y. H.; Ke, W. H.; Wang, G., A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing, Int. J. Rock Mech. Min. Sci., 149, Article 104964 pp. (2022)
[11] Lisjak, A.; Tatone, B. S.A.; Mahabadi, O. K.; Grasselli, G.; Marschall, P.; Lanyon, G. W.; de le Vaissiere, R.; Shao, H.; Leung, H.; Nussbaum, C., Hybrid finite-discrete element simulation of the EDZ formation and mechanical sealing process around a microtunnel in Opalinus clay, Rock Mech. Rock Eng., 49, 1849-1873 (2016)
[12] Lei, Q. H.; Latham, J. P.; Xiang, J. S.; Tsang, C. F., Role of natural fractures in damage evolution around tunnel excavation in fractured rocks, Eng. Geol., 231, 100-113 (2017)
[13] Liu, Q. S.; Deng, P. H., A numerical investigation of element size and loading/unloading rate for intact rock in laboratory-scale and field-scale based on the combined finite-discrete element method, Eng. Fract. Mech., 211, 442-462 (2019)
[14] Antolini, F.; Barla, M.; Gigli, G.; Giorgetti, A.; Intrieri, E.; Casagli, N., Combined finite-discrete numerical modeling of runout of the torgiovannetto di assisi rockslide in Central Italy, Int. J. GeoMech., 16, Article 04016019 pp. (2016)
[15] Klinger, Y.; Okubo, K.; Vallage, A.; Champenois, J.; Delorme, A.; Rougier, E.; Lei, Z.; Knight, E. E.; Munjiza, A.; Satriano, C.; Baize, S.; Langridge, R.; Bhat, H. S., Earthquake damage patterns resolve complex rupture processes, Geophys. Res. Lett., 45, 10279-10287 (2018)
[16] Xiang, J. S.; Latham, J. P.; Farsi, A., Algorithms and capabilities of solidity to simulate interactions and packing of complex shapes, (Proceedings of the 7th International Conference on Discrete Element Methods.. Proceedings of the 7th International Conference on Discrete Element Methods., Springer Proceedings in Physics, vol. 188 (2016), Springer: Springer Singapore)
[17] Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A., A framework for grand scale parallelization of the combined finite discrete element method in 2D, Comput. Part. Mech., 1, 307-319 (2014)
[18] Rougier, E.; Knight, E. E.; Broome, S. T.; Sussman, A. J.; Munjiza, A., Validation of a three-dimensional finite-discrete element method using experimental results of the split hopkinson pressure bar test, Int. J. Rock Mech. Min. Sci., 70, 101-108 (2014)
[19] Lisjak, A.; Mahabadi, O. K.; He, L.; Tatone, B. S.A.; Kaifosh, P.; Haque, S. A.; Grasselli, G., Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using general purpose GPU computing, Comput. Geotech., 100, 84-96 (2018)
[20] Fukuda, D.; Mohammadnejad, M.; Liu, H. Y.; Zhang, Q. B.; Zhao, J.; Dehkhoda, S.; Chan, A.; Kodama, J. I.; Fujii, Y., Development of a 3D hybrid finite-discrete element simulator based on GPGPU-parallelized computation for modelling rock fracturing under quasi-static and dynamic loading conditions, Rock Mech. Rock Eng., 53, 1079-1112 (2020)
[21] Liu, Q. S.; Wang, W. Q.; Ma, H., Parallelized combined finite-discrete element (FDEM) procedure using multi-GPU with CUDA, Int. J. Numer. Anal. Methods Geomech., 44, 208-238 (2020)
[22] Mohammadnejad, M.; Fukuda, D.; Liu, H. Y.; Dehkhoda, S.; Chan, A., GPGPU-parallelized 3D combined finite-discrete element modelling of rock fracture with adaptive contact activation approach, Comput. Part Mech., 7, 849-867 (2020)
[23] Liu, H.; Liu, Q. S.; Ma, H.; Fish, J., A novel GPGPU-parallelized contact detection algorithm for combined finite-discrete element method, Int. J. Rock Mech. Min. Sci., 144, Article 104782 pp. (2021)
[24] Munjiza, A., The Combined Finite-Discrete Element Method (2004), Wiley: Wiley London · Zbl 1194.74452
[25] Munjiza, A.; Andrews, K. R.F., Penalty function method for combined finite-discrete element systems comprising large number of separate bodies, Internat. J. Numer. Methods Engrg., 49, 1377-1396 (2000) · Zbl 1010.74067
[26] Lei, Z.; Rougier, E.; Euser, B.; Munjiza, A., A smooth contact algorithm for the combined finite discrete element method, Comput. Part. Mech., 7, 807-821 (2020)
[27] Yan, C. Z.; Zheng, H., A new potential function for the calculation of contact forces in the combined finite-discrete element method, Int. J. Numer. Anal. Methods Geomech., 41, 265-283 (2017)
[28] Zhao, L. H.; Liu, X. N.; Mao, J.; Xu, D.; Munjiza, A.; Avital, E., A novel discrete element method based on the distance potential for arbitrary 2D convex elements, Internat. J. Numer. Methods Engrg., 115, 238-267 (2018)
[29] Zhao, L. H.; Liu, X. N.; Mao, J.; Xu, D.; Munjiza, A.; Avital, E., A novel contact algorithm based on a distance potential function for the 3d discrete-element method, Rock Mech. Rock Eng., 51, 3737-3769 (2018)
[30] Kloosterman, G., Contact Methods in Finite Element Simulations (2002), University of Twente
[31] Hughes, T. R.J.; Taylor, R. L.; Sackman, J.; Curnier, A.; Kanoknukulchai, W., A finite element method for a class of contact-impact problems, Comput. Methods Appl. Mech. Engrg., 8, 249-276 (1976) · Zbl 0367.73075
[32] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A finite element method for large displacement contact and impact problems, (Bathe, K.; Oden, J.; Wunderlich, W., Formulations and Computational Algorithms in Finite Element Analysis: U.S.-Germany Symposium (1977), MIT: MIT Cambridge), 468-495
[33] Hallquist, J. O., Nike2D: an implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solidsTech. Rep. UCRL-52678 (1979), Lawrence Livermore National Laboratory, University of California: Lawrence Livermore National Laboratory, University of California Livermore
[34] Simo, J.; Wriggers, P.; Taylor, R. L., A perturbed Lagrangian formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 50, 163-180 (1985) · Zbl 0552.73097
[35] Papadopoulos, P.; Taylor, R. L., A mixed formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 94, 373-389 (1992) · Zbl 0743.73029
[36] El-Abbasi, N.; Bathe, K. J., Stability and patch test performance of contact discretizations and a new solution algorithm, Comput. Struct., 79, 1473-1486 (2001)
[37] Fischer, K. A.; Wriggers, P., Frictionless 2D contact formulations for finite deformations based on the mortar method, Comput. Mech., 36, 226-244 (2005) · Zbl 1102.74033
[38] Fischer, K. A.; Wriggers, P., Mortar based frictional contact formulation for higher order interpolations using the moving friction cone, Comput. Methods Appl. Mech. Engrg., 37-40, 5020-5036 (2006) · Zbl 1118.74047
[39] Papadopoulos, P.; Jones, R. E.; Solberg, J. M., A novel finite element formulation for frictionless contact problems, Internat. J. Numer. Methods Engrg., 38, 2603-2617 (1995) · Zbl 0834.73067
[40] Sauer, R. A.; De Lorenzis, L., A computational contact formulation based on surface potentials, Comput. Methods Appl. Mech. Engrg., 253, 369-395 (2013) · Zbl 1297.74085
[41] Sauer, R. A.; De Lorenzis, L., An unbiased computational contact formulation for 3D friction, Internat. J. Numer. Methods Engrg., 101, 251-280 (2015) · Zbl 1352.74211
[42] Bernardi, C.; Debit, N.; Maday, Y., Coupling finite elements and spectral methods: first results, Math. Comp., 54, 21-39 (1990) · Zbl 0685.65098
[43] Bernardi, C.; Maday. A. Patera, Y., A new nonconforming approach to domain decomposition: the mortar element method, (Brezis, H.; Lions, J., Nonlinear Partial Differential Equations and their Applications, Collége de France Seminar, Vol. 12 (1994)), 130-151 · Zbl 0797.65094
[44] Puso, M. A.; Laursen, T. A., A mortar segment-to-segment frictional contact method for large deformations, Comput. Methods Appl. Mech. Engrg., 193, 4891-4913 (2004) · Zbl 1112.74535
[45] Tur, M.; Giner, E.; Fuenmayor, F. J.; Wriggers, P., 2D contact smooth formulation based on the mortar method, Comput. Methods Appl. Mech. Engrg., 247-248, 1-14 (2012) · Zbl 1352.74443
[46] Popp, A.; Seitz, A.; Gee, M. W.; Wall, W. A., Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach, Comput. Methods Appl. Mech. Engrg., 264, 67-80 (2013) · Zbl 1286.74106
[47] Otto, P.; De Lorenzis, L.; Unger, J. F., Coupling a NURBS contact interface with a higher order finite element discretization for contact problems using the mortar method, Comput. Mech., 63, 1203-1222 (2019) · Zbl 1469.74117
[48] Padmanabhan, V.; Laursen, T. A., Surface smoothing procedure for large deformation contact analysis, Finite Elem. Anal. Des., 37, 173-198 (2001) · Zbl 0998.74053
[49] Pietrzak, G.; Curnier, A., Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Comput. Methods Appl. Mech. Engrg., 177, 351-381 (1999) · Zbl 0991.74047
[50] Muñoz, J. J., Modelling unilateral frictionless contact using the null-space method and cubic B-spline interpolation, Comput. Methods Appl. Mech. Engrg., 197, 979-993 (2008) · Zbl 1169.74509
[51] Puso, M. A.; Laursen, T. A., A 3D contact smoothing method using Gregory patches, Internat. J. Numer. Methods Engrg., 54, 1161-1194 (2002) · Zbl 1098.74711
[52] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[53] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229-263 (2010) · Zbl 1227.74123
[54] De Lorenzis, L.; Wriggers, P.; Hughes, T. J.R., Isogeometric contact: A review, GAMM-Mitt., 37, 85-123 (2014) · Zbl 1308.74114
[55] Kruse, R.; Nguyen-Thanh, N.; De Lorenzis, L.; Hughes, T. J.R., Isogeometric collocation for large deformation elasticity and frictional contact problems, Comput. Methods Appl. Mech. Engrg., 296, 73-112 (2015) · Zbl 1423.74649
[56] Maleki-Jebeli, S.; Mosavi-Mashhadi, M.; Baghani, M., A large deformation hybrid isogeometric-finite element method applied to cohesive interface contact/debonding, Comput. Methods Appl. Mech. Engrg., 330, 395-414 (2018) · Zbl 1439.74448
[57] Agrawal, V.; Gautam, S. S., Varying-order NURBS discretization: An accurate and efficient method for isogeometric analysis of large deformation contact problems, Comput. Methods Appl. Mech. Engrg., 367, Article 113125 pp. (2020) · Zbl 1442.74219
[58] Temizer, I.; Wriggers, P.; Hughes, T. J.R., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 209-212, 115-128 (2012) · Zbl 1243.74130
[59] Kim, J. Y.; Youn, S. K., Isogeometric contact analysis using mortar method, Internat. J. Numer. Methods Engrg., 89, 1559-1581 (2012) · Zbl 1242.74131
[60] Seitz, A.; Farah, P.; Kremheller, J.; Wohlmuth, B. I.; Wall, W. A.; Popp, A., Isogeometric dual mortar methods for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 301, 259-280 (2016) · Zbl 1425.74490
[61] Duong, T. X.; De Lorenzis, L.; Sauer, R. A., A segmentation-free isogeometric extended mortar contact method, Comput. Mech., 63, 383-407 (2019) · Zbl 1462.74152
[62] Mlika, R.; Renar, Y.; Chouly, F., An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact, Comput. Methods Appl. Mech. Engrg., 325, 265-288 (2017) · Zbl 1439.74220
[63] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg., 92, 353-375 (1991) · Zbl 0825.76353
[64] Christensen, P.; Pang, J., Frictional contact algorithms based on semismooth Newton methods, (Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Appl. Optim., vol. 22 (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, the Netherlands), 81-116 · Zbl 0937.74078
[65] Ito, K.; Kunisch, K., Semi-smooth Newton methods for the Signorini problem, Appl. Math., 53, 455-456 (2008) · Zbl 1199.49064
[66] Hintermüller, M.; Rösel, S., A duality-based path-following semismooth Newton method for elasto-plastic contact problems, J. Comput. Appl. Math., 292, 150-173 (2016) · Zbl 1322.49051
[67] Zhang, S. G.; Yan, Y. Y.; Ran, R. S., Path-following and semismooth Newton methods for the variational inequality arising from two membranes problem, J. Inequal. Appl., 1, 1-13 (2019) · Zbl 1499.49050
[68] Munjiza, A.; Knight, E. E.; Rougier, E., Computational Mechanics of Discontinua (2012), Wiley: Wiley New York
[69] Zheng, F.; Zhuang, X. Y.; Zheng, H.; Jiao, Y. Y.; Rabczuk, T., Kinetic analysis of polyhedral block system using an improved potential-based penalty function approach for explicit discontinuous deformation analysis, Appl. Math. Model., 82, 314-335 (2020) · Zbl 1481.74555
[70] Hallquist, J., LS-DYNA Theoretical Manual (1998), Livermore software Technology Corporation: Livermore software Technology Corporation Livermore
[71] Feng, Y. T.; Owen, D. R.J., A 2D polygon/polygon contact model: algorithmic aspects, Int. J. Engrg. Comput., 21, 265-277 (2004) · Zbl 1062.74651
[72] Feng, Y. T.; Han, K.; Owen, D. R.J., An energy based polyhedron-to-polyhedron contact model, (Proceeding of 3rd M.I.T. Conference of Computational Fluid and Solid Mechanics (2005), MIT: MIT USA), 210-214
[73] Feng, Y. T.; Han, K.; Owen, D. R.J., Energy-conserving contact interaction models for arbitrarily shaped discrete elements, Comput. Methods Appl. Mech. Engrg., 205-208, 165-177 (2012) · Zbl 1239.74065
[74] Smith, K. C.; Alam, M.; Fisher, T. S., Athermal jamming of soft frictionless platonic solids, Phys. Rev. E., 82, Article 051304 pp. (2010)
[75] Govender, N.; Wilke, D. N.; Pizette, P.; Abriak, N. E., A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code, Appl. Math. Comput., 319, 318-336 (2018) · Zbl 1426.74108
[76] Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H., The quickhull algorithm for convex hulls, ACM Trans. Math. Software, 22, 469-483 (1996) · Zbl 0884.65145
[77] Nassauer, B.; Liedke, T.; Kuna, M., Polyhedral particles for the discrete element method, Granular Matter., 15, 85-93 (2013)
[78] Stroud, A. H., Approximate Calculation of Multiple Integrals (1971), Prentice-Hall Inc. Englewood Cliffs: Prentice-Hall Inc. Englewood Cliffs N. J. · Zbl 0379.65013
[79] Yan, C. Z.; Zheng, H.; Ge, X. R., Unified calibration based potential contact force in discrete element method, Rock Soil Mech., 36, 249-256 (2015), (in Chinese)
[80] Liu, X. N.; Zhao, L. H.; Mao, J.; Li, T. C., Tangential force model for the combined finite-discrete element method, Int. J. Comp. Meth-Sing., 17, 1-32 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.