Yang, Haihua; Zhang, Ping A hybrid subcell-remapping algorithm for staggered multi-material arbitrary Lagrangian-Eulerian methods. (English) Zbl 1431.76106 AMM, Appl. Math. Mech., Engl. Ed. 40, No. 10, 1487-1508 (2019). Summary: A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime [R. Loubére and M. J. Shashkov, J. Comput. Phys. 209, No. 1, 105–138 (2005; Zbl 1329.76236)]. A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method. MSC: 76M99 Basic methods in fluid mechanics 76T99 Multiphase and multicomponent flows Keywords:multi-material arbitrary Lagrangian-Eulerian (MMALE); subcell remapping method; hybrid remapping method Citations:Zbl 1329.76236 Software:EGAK; ReALE PDF BibTeX XML Cite \textit{H. Yang} and \textit{P. Zhang}, AMM, Appl. Math. Mech., Engl. Ed. 40, No. 10, 1487--1508 (2019; Zbl 1431.76106) Full Text: DOI References: [1] HIRT, C. W., AMSDEN, A. A., and COOK, J. L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14, 227-253 (1974) · Zbl 0292.76018 [2] LOUBÈRE, R. and SHASHKOV, M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105-138 (2005) · Zbl 1329.76236 [3] BREIL, J., HARRIBEY, T., MAIRE, P. H., and SHASHKOV, M. A multi-material ReALE method with MOF interface reconstruction. Computers & Fluids, 83, 115-125 (2013) · Zbl 1290.76094 [4] GALERA, S., MAIRE, P. H., and BREIL, J. A two-dimensional unstructured cell-centered multimaterial ALE scheme using VOF interface reconstruction. Journal of Computational Physics, 229, 5755-5787 (2010) · Zbl 1346.76105 [5] JIA, Z., LIU, J., and ZHANG, S. An effective integration of methods for second-order threedimensional multi-material ALE method on unstructured hexahedral meshes using MOF interface reconstruction. Journal of Computational Physics, 236, 513-562 (2013) · Zbl 1286.65036 [6] BARLOW, A. J., MAIRE, P. H., RIDER,W. J., RIEBEN, R. N., and SHASHKOV, M. Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows. Journal of Computational Physics, 322, 603-665 (2016) · Zbl 1351.76093 [7] BOSCHERI, W. and DUMBSER, M. Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. Journal of Computational Physics, 346, 449-479 (2017) · Zbl 1378.76044 [8] ANDERSON, R. W., DOBREV, V. A., KOLEV, T. V., RIEBEN, R. N., and TOMOV, V. Z. High-order multi-material ALE hydrodynamics. SIAM Journal on Scientific Computing, 40(1), B32-B58 (2018) · Zbl 1480.65246 [9] BERNDT, M., BREIL, J., GALERA, S., KUCHARIK, M., MAIRE, P. H., and SHASHKOV, M. Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics, 230, 6664-6687 (2011) · Zbl 1408.65077 [10] BENSON, D. J. Computational methods in Lagrangian and Eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering, 99(2-3), 235-394 (1992) · Zbl 0763.73052 [11] PEERY, J. S. and CARROLL, D. E. Multi-material ALE methods in unstructured grids. Computer Methods in Applied Mechanics and Engineering, 187(3-4), 591-619 (2000) · Zbl 0980.74068 [12] KAMM, J. R. and SHASHKOV, M. A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamcis based on the Riemann problem. Communications in Computational Physics, 7(5), 927-976 (2010) · Zbl 1364.76134 [13] YANILKIN, Y. V., GONCHAROV, E. A., KOLOBYANIN, V. Y., SADCHIKOV, V. V., KAMM, J. R., SHASHKOV, M., and REIDER, W. J. Multi-material pressure relaxation methods for Lagrangian hydrodynamics. Computers & Fluids, 83, 137-143 (2013) · Zbl 1290.76138 [14] Barlow, A.; Hill, R. N.; Shashkov, M., Constrained Optimization Framework for Interface-Aware Sub-Scale Dynamics Closure Models for Multimaterial Cells in Lagrangian and Arbitrary Lagrangian-Eulerian hydrodynamics (2013), Los Alamos [15] YANILKIN, Y. V., TOPOROVA, O. O., and KOLOBYANIN, V. Y. Anisotropic closure model in mixed cells. Mathematical Models and Computer Simulations, 10, 164-175 (2018) [16] KAMM, J. R., SHASHKOV, M., FUNG, J., HARRISON, A. K., and CANFIELD, T. R. A comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics. International Journal for Numerical Methods in Fluids, 65(11-12), 1311-1324 (2011) · Zbl 1429.76088 [17] SHASHKOV, M. Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes. International Journal for Numerical Methods in Fluids, 56(8), 1497-1504 (2008) · Zbl 1151.76026 [18] BARLOW, A., MORGAN, N., and SHASHKOV, M. Constrained optimization framework for interface-aware sub-scale dynamics discrete closure model for multimaterial cells in Lagrangian cell-centered hydrodynamics. Computers & Mathematics with Applications, 78, 541-564 (2019) · Zbl 1442.65189 [19] SCARDOVELLI, R. and ZALESKI, S. Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. International Journal for Numerical Methods in Fluids, 41(3), 251-274 (2003) · Zbl 1047.76080 [20] BENSON, D. J. Volume of fluid interface reconstruction methods for multi-material problems. Applied Mechanics Reviews, 55(2), 151-165 (2002) [21] Dyadechko, V.; Shashkov, M., Moment-of-Fluid Interface Reconstruction (2005), Los Alamos [22] JIBBEN, Z., CARLSON, N. N., and FRANCOIS, M. M. A paraboloid fitting technique for calculating curvature from piecewise-linear interface reconstructions on 3D unstructured meshes. Computers & Mathematics with Applications, 78(2), 643-653 (2019) · Zbl 1442.65021 [23] AHN, H. T. and SHASHKOV, M. Multi-material interface reconstruction on generalized polyhedral meshes. Journal of Computational Physics, 226, 2096-2132 (2007) · Zbl 1388.76232 [24] DYADECHKO, V. and SHASHKOV, M. Reconstruction of multi-material interfaces from moment data. Journal of Computational Physics, 227, 5361-5384 (2008) · Zbl 1220.76048 [25] AHN, H. T., SHASHKOV, M., and CHRISTON, M. A. The moment-of-fluid method in action. Communications in Numerical Methods in Engineering, 25(10), 1009-1018 (2009) · Zbl 1276.76049 [26] KUCHARIK, M., GARIMELLA, R. V., SCHOFIELD, S. P., and SHASHKOV, M. A comparative study of interface reconstruction methods for multi-material ALE simulations. Journal of Computational Physics, 229, 2432-2452 (2010) · Zbl 1423.76343 [27] ANBARLOOEI, H. R. and MAZAHERI, K. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms. Computer Methods in Applied Mechanics and Engineering, 198(47-48), 3782-3794 (2009) · Zbl 1230.76038 [28] CARAMANA, E. J., BURTON, D. E., SHASHKOV, M., and WHALEN, P. P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. Journal of Computational Physics, 146, 227-262 (1998) · Zbl 0931.76080 [29] BENSON, D. J. An efficient, accurate, simple ALE method for nonlinear finite element programs. Computer Methods in Applied mechanics and Engineering, 72, 305-350 (1989) · Zbl 0675.73037 [30] GARIMELLA, R. V., KUCHARIK, M., and SHASHKOV, M. An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes. Computers & Fluids, 36(2), 224-237 (2007) · Zbl 1177.76346 [31] MARGOLIN, L. G. and SHASHKOV, M. Second-order sign-preserving conservative interpolation (remapping) on general grids. Journal of Computational Physics, 184, 266-298 (2003) · Zbl 1016.65004 [32] KUCHARIK, M., SHASHKOV, M., and WENDROFF, B. An efficient linearity-and-boundpreserving remapping method. Journal of Computational Physics, 188, 462-471 (2003) · Zbl 1022.65009 [33] KUCHARIK, M. and SHASHKOV, M. One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics, 231, 2851-2864 (2012) · Zbl 1323.74108 [34] DUKOWICZ, J. K. and BAUMGARDNER, J. R. Incremental remapping as a transport/advection algorithm. Journal of Computational Physics, 160, 318-335 (2000) · Zbl 0972.76079 [35] MENON, S. and SCHMIDT, D. P. Conservative interpolation on unstructured polyhedral meshes: an extension of the supermesh approach to cell-centered finite-volume variables. Computer Methods in Applied Mechanics and Engineering, 200(41-44), 2797-2804 (2011) · Zbl 1230.76034 [36] KUCHARIK, M. and SHASHKOV, M. Conservative multi-material remap for staggered multimaterial arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics, 258, 268-304 (2014) · Zbl 1349.76493 [37] KUCHARIK, M., BREIL, J., GALERA, S., MAIRE, P. H., BERNDT, M., and SHASHKOV, M. Hybrid remap for multi-material ALE. Computers & Fluids, 46(1), 293-297 (2011) · Zbl 1433.76133 [38] STARINSHAK, D. P. and OWEN, J. M. A subzone reconstruction algorithm for efficient staggered compatible remapping. Journal of Computational Physics, 296, 263-292 (2015) · Zbl 1352.76076 [39] STARINSHAK, D. P. and OWEN, J. M. A multimaterial extension to subzonal reconstruction. Journal of Computational Physics, 313, 594-616 (2016) · Zbl 1349.76646 [40] CARAMANA, E. J., SHASHKOV, M., and WHALEN, P. P. Formulations of artificial viscosity for multi-dimensional shock wave computations. Journal of Computational Physics, 144, 70-97 (1998) · Zbl 1392.76041 [41] MAIRE, P. H., LOUBÈRE, R., and VÁCHAL, P. Staggered Lagrangian discretization based on cell-centered Riemann solver and associated hydrodynamics scheme. Communications in Computational Physics, 10(4), 940-978 (2011) · Zbl 1373.76138 [42] LOUBÈRE, R., MAIRE, P. H., and VÁCHAL, P. A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver. Procedia Computer Science, 1(1), 1931-1939 (2010) · Zbl 1432.76206 [43] BARTH, T. J.; Kröner, D. (ed.); Ohlberger, M. (ed.); Rohde, C. (ed.), Numerical methods for gasdynamic systems on unstructured meshes, 195-285 (1999), Berlin · Zbl 0969.76040 [44] MIRTICH, B. Fast and accurate computation of polyhedral mass properties. Journal of Graphics Tools, 1(2), 31-50 (1996) [45] HOCH, P. An Arbitrary Lagrangian-Eulerian Strategy to Solve Compressible Fluid Flows, HAL-00366858 (2009) https://hal.archives-ouvertes.fr/hal-00366858 [46] CHEN, X., ZHANG, X., and JIA, Z. A robust and efficient polyhedron subdivision and intersection algorithm for three-dimensional MMALE remapping. Journal of Computational Physics, 338, 1-17 (2017) · Zbl 1415.76448 [47] Pember, R. B.; Anderson, RW, A Comparison of Staggered-Mesh Lagrange Plus Remap and Cell-Centered Direct Eulerian Godunov Schemes for Eulerian Shock Hydrodynamics (2000), Californina [48] RAPHAËL, L., STALEY, M., and WENDROFF, B. The repair paradigm: new algorithms and applications to compressible flow. Journal of Computational Physics, 211, 385-404 (2006) · Zbl 1138.76406 [49] SHASHKOV, M. and WENDROFF, B. The repair paradigm and application to conservation laws. Journal of Computational Physics, 198, 265-277 (2004) · Zbl 1107.65341 [50] HAAS, J. F. and STURTEVANT, B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 181, 41-76 (1987) [51] QUIRK, J. J. and KARNI, S. On the dynamics of a shock-bubble interaction. Journal of Fluid Mechanics, 318, 129-163 (1996) · Zbl 0877.76046 [52] Fung, J.; Francois, M.; Dendy, E.; Kenamond, M.; Lowrie, R., Calculations of the Rayleigh-Taylor instability: RAGE and FLAG hydrocode comparisons (2006), Los Alamos This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.