×

Family non-universal \(\mathrm{U}(1)'\) model with minimal number of exotics. (English) Zbl 07408608

Summary: We have studied phenomenological implications of several family non-universal \(\mathrm{U}(1)'\) sub-models in the \(\mathrm{U}(1)'\)-extended Minimal Supersymmetric Standard Model (UMSSM) possessing an extra down quark type exotic field. In doing this, we have started by enforcing anomaly cancellation criteria to generate a number of solutions in which the extra \(\mathrm{U}(1)'\) charges of the particles are treated as free parameters. We have then imposed existing bounds coming from colliders and astrophysical observations on the assumed sub-models and observed that current limits dictate certain charge orientations, for instance, \( Q_{H_u} \sim Q_{H_d}\) is preferred in general and the charge of the singlet \(Q_S\) cannot be very small (\(| Q_S | > 0.4\)) even if any of the charges is allowed to take any value within the \([-1, 1]\) range. We have finally studied the potential impact of such non-universal charges on \(Z^\prime\) mediated processes and made predictions for existing and future experiments. It has turned out that UMSSMs with or without the presence of light exotic quarks can yield distinguishable signatures if non-universal charges are realised in the leptonic sector of such models.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Cvetic, M.; Langacker, P., New gauge bosons from string models, Mod. Phys. Lett. A, 11, 1247-1262 (1996) · Zbl 1022.81673
[2] Hewett, J. L.; Rizzo, T. G., Low-energy phenomenology of superstring inspired E(6) models, Phys. Rep., 183, 193 (1989)
[3] Barr, S. M., Effects of extra light Z bosons in unified and superstring models, Phys. Rev. Lett., 55, 2778 (1985)
[4] Cvetic, M.; Langacker, P., Implications of Abelian extended gauge structures from string models, Phys. Rev. D, 54, 3570-3579 (1996)
[5] Cleaver, G.; Cvetic, M.; Espinosa, J. R.; Everett, L. L.; Langacker, P., Intermediate scales, mu parameter, and fermion masses from string models, Phys. Rev. D, 57, 2701-2715 (1998)
[6] Cleaver, G.; Cvetic, M.; Espinosa, J. R.; Everett, L. L.; Langacker, P., Classification of flat directions in perturbative heterotic superstring vacua with anomalous U(1), Nucl. Phys. B, 525, 3-26 (1998) · Zbl 1031.81598
[7] Ghilencea, D. M.; Ibanez, L. E.; Irges, N.; Quevedo, F., TeV scale Z-prime bosons from D-branes, J. High Energy Phys., 08, Article 016 pp. (2002) · Zbl 1226.81191
[8] King, S. F.; Moretti, S.; Nevzorov, R., Theory and phenomenology of an exceptional supersymmetric standard model, Phys. Rev. D, 73, Article 035009 pp. (2006)
[9] Diener, R.; Godfrey, S.; Martin, T. A.W., Discovery and identification of extra neutral gauge bosons at the LHC, (Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009), vol. 10 (2009))
[10] Langacker, P., The physics of heavy \(Z^\prime\) gauge bosons, Rev. Mod. Phys., 81, 1199-1228 (2009)
[11] Frank, M.; Selbuz, L.; Solmaz, L.; Turan, I., Higgs bosons in supersymmetric U(1)’ models with CP violation, Phys. Rev. D, 87, Article 075007 pp. (2013)
[12] Frank, M.; Selbuz, L.; Turan, I., Neutralino and chargino production in U(1)’ at the LHC, Eur. Phys. J. C, 73, 2656 (2013)
[13] Demir, D. A.; Frank, M.; Selbuz, L.; Turan, I., Scalar neutrinos at the LHC, Phys. Rev. D, 83, Article 095001 pp. (2011)
[14] Athron, P.; Harries, D.; Williams, A. G., \( Z^\prime\) mass limits and the naturalness of supersymmetry, Phys. Rev. D, 91, Article 115024 pp. (2015)
[15] Athron, P.; King, S. F.; Miller, D. J.; Moretti, S.; Nevzorov, R., The constrained exceptional supersymmetric standard model, Phys. Rev. D, 80, Article 035009 pp. (2009)
[16] Frank, M.; Hiçyılmaz, Y.; Moretti, S.; Özdal, O., E_6 motivated UMSSM confronts experimental data, J. High Energy Phys., 05, Article 123 pp. (2020)
[17] Frank, M.; Hiçyılmaz, Y.; Moretti, S.; Özdal, O., Leptophobic \(Z^\prime\) bosons in the secluded UMSSM, Phys. Rev. D, 102, Article 115025 pp. (2020)
[18] Gildener, E., Gauge symmetry hierarchies, Phys. Rev. D, 14, 1667 (1976)
[19] Weinberg, S., Gauge hierarchies, Phys. Lett. B, 82, 387-391 (1979)
[20] Susskind, L., Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D, 20, 2619-2625 (1979)
[21] Degrassi, G.; Di Vita, S.; Elias-Miro, J.; Espinosa, J. R.; Giudice, G. F.; Isidori, G., Higgs mass and vacuum stability in the Standard Model at NNLO, J. High Energy Phys., 08, Article 098 pp. (2012)
[22] Bezrukov, F.; Kalmykov, M. Y.; Kniehl, B. A.; Shaposhnikov, M., Higgs boson mass and new physics, J. High Energy Phys., 10, Article 140 pp. (2012)
[23] Fazio, A. R.; Reyes R., E. A., The lightest Higgs boson mass of the MSSM at three-loop accuracy, Nucl. Phys. B, 942, 164-183 (2019) · Zbl 1415.81125
[24] Georgi, H.; Glashow, S. L., Unity of all elementary particle forces, Phys. Rev. Lett., 32, 438-441 (1974)
[25] Bae, K. J.; Baer, H.; Barger, V.; Sengupta, D., Revisiting the SUSY μ problem and its solutions in the LHC era, Phys. Rev. D, 99, Article 115027 pp. (2019)
[26] Suematsu, D.; Yamagishi, Y., Radiative symmetry breaking in a supersymmetric model with an extra U(1), Int. J. Mod. Phys. A, 10, 4521-4536 (1995)
[27] Jain, V.; Shrock, R., U(1)-A models of fermion masses without a mu problem
[28] Nir, Y., Gauge unification, Yukawa hierarchy and the mu problem, Phys. Lett. B, 354, 107-110 (1995)
[29] Erler, J.; Langacker, P.; Li, T.-j., The Z - \( Z^\prime\) mass hierarchy in a supersymmetric model with a secluded U(1)-prime breaking sector, Phys. Rev. D, 66, Article 015002 pp. (2002)
[30] Aaij, R., Test of lepton universality using \(B^+ \to K^+ \ell^+ \ell^-\) decays, Phys. Rev. Lett., 113, Article 151601 pp. (2014)
[31] King, S. F., \( R_{K^{( \ast )}}\) and the origin of Yukawa couplings, J. High Energy Phys., 09, Article 069 pp. (2018)
[32] Cheng, H.-C.; Dobrescu, B. A.; Matchev, K. T., A chiral supersymmetric standard model, Phys. Lett. B, 439, 301-308 (1998)
[33] Erler, J., Chiral models of weak scale supersymmetry, Nucl. Phys. B, 586, 73-91 (2000)
[34] Demir, D. A.; Kane, G. L.; Wang, T. T., The minimal U(1)’ extension of the MSSM, Phys. Rev. D, 72, Article 015012 pp. (2005)
[35] Allanach, B. C.; Davighi, J.; Melville, S., An anomaly-free atlas: charting the space of flavour-dependent gauged \(U(1)\) extensions of the Standard Model, J. High Energy Phys., 02, Article 082 pp. (2019)
[36] Frank, M.; Huitu, K.; Mondal, S., Dark matter and collider signals in supersymmetric \(U ( 1 )^\prime\) models with non-universal \(Z^\prime\) couplings, Phys. Rev. D, 100, Article 115018 pp. (2019)
[37] Frank, M., Evading \(Z^\prime\) boson mass limits in \(U ( 1 )^\prime\) supersymmetric models, Eur. Phys. J. ST, 229, 3205-3220 (2020)
[38] Brooks, M. L., New limit for the family number nonconserving decay mu+ —> e+ gamma, Phys. Rev. Lett., 83, 1521-1524 (1999)
[39] Mlynáriková, M., Search for rare and lepton-flavor violating decays of the Higgs boson with the ATLAS detector, Int. J. Mod. Phys. A, 35, 34-35, Article 2044001 pp. (2020)
[40] Rosner, J. L., Mixing of charge -1/3 quarks and charged leptons with exotic fermions in E(6)
[41] Kazana, M., Searches for heavy stable charged particles and other exotic signatures with large ionization at the LHC, 132-137 (2016), CMS-CR-2016-003
[42] Erler, J.; Langacker, P.; Munir, S.; Rojas, E., Improved constraints on Z-prime bosons from electroweak precision data, J. High Energy Phys., 08, Article 017 pp. (2009)
[43] Aad, G., Search for high-mass dilepton resonances using 139 fb^−1 of pp collision data collected at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, Phys. Lett. B, 796, 68-87 (2019)
[44] Sert, H.; Cincioglu, E.; Demir, D. A.; Solmaz, L., Tevatron Higgs mass bounds: projecting U(1)’ models to LHC domain, Phys. Lett. B, 692, 327-335 (2010)
[45] Porod, W., SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders, Comput. Phys. Commun., 153, 275-315 (2003)
[46] Staub, F., SARAH · Zbl 1348.81026
[47] Staub, F., Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun., 182, 808-833 (2011) · Zbl 1214.81168
[48] Staub, F., Exploring new models in all detail with SARAH, Adv. High Energy Phys., 2015, Article 840780 pp. (2015) · Zbl 1366.83027
[49] Hisano, J.; Murayama, H.; Yanagida, T., Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B, 402, 46-84 (1993)
[50] Belanger, G.; Boudjema, F.; Pukhov, A.; Singh, R. K., Constraining the MSSM with universal gaugino masses and implication for searches at the LHC, J. High Energy Phys., 11, Article 026 pp. (2009)
[51] Chatrchyan, S., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 716, 30-61 (2012)
[52] Tanabashi, M., Review of particle physics, Phys. Rev. D, 98, Article 030001 pp. (2018)
[53] Amhis, Y., Averages of B-hadron, C-hadron, and tau-lepton properties as of early 2012
[54] Aaij, R., First evidence for the decay \(B_s^0 \to \mu^+ \mu^-\), Phys. Rev. Lett., 110, Article 021801 pp. (2013)
[55] Asner, D., Averages of b-hadron, c-hadron, and τ-lepton properties
[56] Hinshaw, G., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. Ser., 208, 19 (2013)
[57] Ade, P. A.R., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys., 571, Article A16 pp. (2014)
[58] Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, Article A6 pp. (2020)
[59] Bélanger, G.; Boudjema, F.; Goudelis, A.; Pukhov, A.; Zaldivar, B., micrOMEGAs5.0: freeze-in, Comput. Phys. Commun., 231, 173-186 (2018)
[60] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys., 07, Article 079 pp. (2014) · Zbl 1402.81011
[61] Ball, R. D., Parton distributions with LHC data, Nucl. Phys. B, 867, 244-289 (2013)
[62] Sirunyan, A. M., Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \(\sqrt{ s} = 13\) TeV, J. High Energy Phys., 05, Article 033 pp. (2020)
[63] Sirunyan, A. M., Search for narrow and broad dijet resonances in proton-proton collisions at \(\sqrt{ s} = 13\) TeV and constraints on dark matter mediators and other new particles, J. High Energy Phys., 08, Article 130 pp. (2018)
[64] Gianotti, F., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C, 39, 293-333 (2005)
[65] High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report, CERN Yellow Reports: Monographs (2015)
[66] Abada, A., HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST, 228, 1109-1382 (2019)
[67] Physics at the FCC-hh, a 100 TeV pp collider
[68] Abada, A., FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C, 79, 474 (2019)
[69] A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report, CERN Yellow Reports: Monographs (2012)
[70] The compact linear collider - project implementation plan
[71] Charles, T. K., The compact linear collider (CLIC) - 2018 summary report
[72] del Aguila, F.; Quiros, M.; Zwirner, F., Detecting E(6) neutral gauge bosons through lepton pairs at hadron colliders, Nucl. Phys. B, 287, 419-456 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.