The enumeration of groups of order \(p^{n}q\) for \(n\leq 5\). (English) Zbl 1403.20035

Having a complete list of isomorphism types of groups of any given order might be seen as the ultimate goal of finite group theory. This is obviously an impossible mission, but over the past 125 years or so advances have been made, starting with results of Hölder and progressing to much more challenging lists, as for example the classification of all groups of order \(p^n\) for \(n\leq 7\) and \(p\) an arbitrary prime.
The paper under review deals with a restricted class of solvable groups.
Let \(p\) and \(q\) be distinct primes and let \(n\leq 5\).The authors determine a function \(\mathcal N_n(p,q)\) that yields the number of isomorphism types of groups of order \(p^nq\).
This function is expressed as the sum of four somewhat simpler functions, describing the number of nilpotent groups in question, the number of non-nilpotent groups with a normal Sylow \(p\)-subgroup, the number of non-nilpotent groups with a normal Sylow \(q\)-subgroup and finally the number of groups in question having no normal Sylow subgroup.
The mathematics involved is complex, for the Lazard correspondence, combinatorial techniques related to various linear groups, generalized polynomials on residue classes modulo various primes are used in combination with linear algebra techniques and various computer algebra algorithms and libraries.


20D60 Arithmetic and combinatorial problems involving abstract finite groups
20D15 Finite nilpotent groups, \(p\)-groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20-04 Software, source code, etc. for problems pertaining to group theory
Full Text: DOI


[1] Bagnera, G., Works, Rend. Circ. Mat. Palermo (2) Suppl., 60 (1999), xxviii+381. With a preface by Pasquale Vetro, Edited by Guido Zappa and Giovanni Zacher
[2] Besche, H. U.; Eick, B., The groups of order \(q^n \cdot p\), Comm. Algebra, 29, 4, 1759-1772 (2001) · Zbl 1056.20016
[3] Besche, H. U.; Eick, B.; O’Brien, E., A millenium project: constructing small groups, Internat. J. Algebra Comput., 12, 623-644 (2002) · Zbl 1020.20013
[4] Besche, H. U.; Eick, B.; O’Brien, E., SmallGroups - a library of groups of small order (2005), A GAP 4 package. Webpage available at
[5] Cicalò, S.; de Graaf, W. A.; Vaughan-Lee, M., An effective version of the Lazard correspondence, J. Algebra, 352, 430-450 (2012) · Zbl 1254.20032
[6] Eick, B., The groups whose orders have at most 4 prime divisors (2016)
[7] Eick, B.; Horn, M., The construction of finite solvable groups revisited, J. Algebra, 408, 166-182 (2014) · Zbl 1311.20016
[8] Eick, B.; Horn, M.; Hulpke, A., Constructing groups of ‘small’ order: recent results and open problems, (Proceedings of the Schwerpunkt Computer Algebra (2017)) · Zbl 1400.20014
[9] Eick, B.; Horn, M.; Zandi, S., Schur multipliers and the Lazard correspondence, Arch. Math. (Basel), 99, 3, 217-226 (2012) · Zbl 1315.20013
[10] Eick, B.; Moede, T., The enumeration of groups of order \(p^n q\) for \(n \leq 5\): groups with normal Sylow \(q\)-subgroup (2017), Available at
[11] Eick, B.; Moede, T., pnqporc, a GAP 4 package (2017), Available at
[12] Girnat, B., Klassifikation der Gruppen bis zur Ordnung \(p^5\). Staatsexamensarbeit (2003), TU Braunschweig
[13] Higman, G., Enumerating \(p\)-groups. II: problems whose solution is porc, Proc. London Math. Soc., 10, 566-582 (1960) · Zbl 0201.36502
[14] Hölder, O., Die Gruppen der Ordnungen \(p^3, p q^2\), pqr, \(p^4\), Math. Ann., 43, 301-412 (1893) · JFM 25.0201.02
[15] Hölder, O., Die Gruppen mit quadratfreier Ordnung, Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl., 211-229 (1895) · JFM 26.0162.01
[16] Horn, M., The number of small groups, Webpage available at
[17] Laue, R., Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen, Bayreuth. Math. Schr., 9 (1982) · Zbl 0479.20010
[18] Lazard, M., Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér., 3, 71, 101-190 (1954) · Zbl 0055.25103
[19] Lin, H.-L., On groups of order \(p^2 q, p^2 q^2\), Tamkang J. Math., 5, 167-190 (1974) · Zbl 0298.20018
[20] Newman, M. F.; O’Brien, E. A.; Vaughan-Lee, M. R., Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278, 383-401 (2003) · Zbl 1072.20022
[21] O’Brien, E. A.; Vaughan-Lee, M. R., The groups with order \(p^7\) for odd prime \(p\), J. Algebra, 292, 1, 243-258 (2005) · Zbl 1108.20016
[22] GAP - Groups, Algorithms and Programming, version 4.4 (2005), Available from
[23] Vaughan-Lee, M., Graham Higman’s PORC conjecture, Jahresber. Dtsch. Math.-Ver., 114, 2, 89-106 (2012) · Zbl 1259.20019
[24] Vaughan-Lee, M., Groups of order \(p^8\) and exponent \(p\), Int. J. Group Theory, 4, 4, 25-42 (2015) · Zbl 1456.20016
[25] Vaughan-Lee, M.; Eick, B., LiePRing - Database and Algorithms for Lie p-Rings (2015), A GAP 4 package, see [22]
[26] Western, A., Groups of order \(p^3 q\), Proc. London Mat. Soc., 30, 209-263 (1899) · JFM 30.0145.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.