Multi-criteria optimization of a hexapod machine. (English) Zbl 1146.70306

Summary: Alternative designs of a hexapod machine are proposed and investigated with the aims to reduce flexibility and to eliminate singular kinematic configurations that appear in the workspace for the current design of the machine. The hexapod is modeled as a rigid multibody system. Articular coordinates associated with desired tool trajectories are computed by inverse kinematics. Hence, dynamic forces and torques are not considered and, as there is no closed-loop control realized in the model, the actual rotational and translational position of the tool deviates from the desired position due to machining loads. These deviations serve as objective functions during a multi-criteria optimization in order to determine the best design regarding stiffness/flexibility of the machine. Further, a general approach for evaluating flexibility behavior of the machine in the complete workspace is introduced and the results from the optimization are verified. Besides flexibility, a crucial point for machining tools is the size of the feasible workspace. Therefore, the influence of the design modification on the workspace is also taken into account.


70B15 Kinematics of mechanisms and robots
90C29 Multi-objective and goal programming
Full Text: DOI


[1] Bestle, D., Analyse und Optimierung von Mehrkörpersystemen. Berlin: Springer, 1994. · Zbl 0817.70002
[2] Bestle, D. and Eberhard, P., NEWOPT/AIMS 2.2. Ein Programmsystem zur Analyse und Optimierung von mechanischen Systemen. Manual AN–35. Institute B of Mechanics, University of Stuttgart, 1994.
[3] Bestle, D. and Eberhard, P., ’Dynamic system design via multicriteria optimization’, in Multiple Criteria Decision Making. {Proceedings of the Int. Conf. on MCDM, Hagen, 1995, Fandel, G. and Gal, T. (eds.), pp. 467–478, Berlin: Springer}, 1997. · Zbl 0898.90068
[4] Bestle, D. and Eberhard, P., ’Analyzing and optimizing multibody systems’, Mechanics of Structures and Machines 20, 1989, 67–92.
[5] Bischof, C., Carle, A., Khademi, P. and Mauer, A., ’ADIFOR 2.0: Automatic Differentiation of Fortran 77 programs’, IEEE Computational Science & Engineering 3, 1996, 18–32. · Zbl 05092146
[6] Boër, C., Molinari–Tosatti, L. and Smith, K. (eds.), Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements (Advanced Manufacturing). London: Springer, 1999.
[7] Dasgupta, B. and Mruthyunjaya, T., ’Force redundancy in parallel manipulators: Theoretical and practical issues., Mechanisms and Machine Theory 33(6), 1998, 727–742. · Zbl 1049.70601
[8] Dignath, F., Zur Optimierung mechatronischer Systeme mit nichtdifferenzierbaren Kriterien. VDI–Fortschritt-Berichte, Series 8, No. 1031, Düsseldorf: VDI-Verlag, 2004.
[9] Dignath, F. and Hempelmann, D., Grundlagenuntersuchungen zum thermischen Einfluss – Bericht 2002. Report ZB–131. Institute B of Mechanics, University of Stuttgart, 2002.
[10] Eberhard, P., Zur Mehrkriterienoptimierung von Mehrkörpersystemen. VDI–Fortschritt-Berichte, Series 11, No. 227, Düsseldorf: VDI-Verlag, 1996.
[11] Eberhard, P. and Bestle, D., ’Integrated modeling, simulation and optimization of multibody systems’, in Integrated Systems Engineering. Johannsen, G. (ed.), pp. 35–40, Oxford: Pergamon, 1994. · Zbl 0817.70004
[12] Eberhard, P., Dignath, F. and Kübler, L., ’Parallel evolutionary optimization of multibody systems with application to railway dynamics’, Multibody System Dynamics 9, 2003, 143–164. · Zbl 1041.70006
[13] Fletcher, R., Practical Methods of Optimization. Chichester: John Wiley & Sons, 1987. · Zbl 0905.65002
[14] Gosselin, C. and Angeles, J., ’Singularity analysis of closed–loop kinematic chains’, IEEE Transactions on Robotics and Automation 6(3), 1990, 281–290.
[15] Heisel, U., ’Precision requirements of hexapod-machines and investigation results’, in Proceedings of the First European–American Forum on Parallel Kinematic Machines. Mailand, 1998.
[16] Heisel, U., Maier, V. and Lunz, E. ’Auslegung von maschinenkonstruktionen mit Gelenkstab-Kinematik-Grundaufbau, Tools, Komponentenauswahl, Methoden und Erfahrungen’, wt–Werkstatttechnik 88 4, 1998, 75–78.
[17] Kirchner, J., Mehrkriterielle Optimierung von Parallelkinematiken. Berichte aus dem IWU, No. 12, Chemnitz: Verlag Wissenschaftliche Scripten, 2000.
[18] Kreuzer, E. and Leister, G., Programmsystem NEWEUL’90. Manual AN–24. Institute B of Mechanics, University of Stuttgart, 1991.
[19] Liu, J., Kinematics and Dynamics of Spatial Hexapod Motions with Thermal Disturbances, Report IB–38. Institute B of Mechanics, University of Stuttgart, 2001.
[20] Merlet, J.-P., Parallel Robots. Dordrecht: Kluwer, 2000.
[21] Merlet, J.-P., ’Singular configurations of parallel manipulators and grassmann geometry’, Journal of Robotics Research 8(5), 1989, 45–56. · Zbl 05422374
[22] O’Brien, J. and Wen, J., ’Redundant actuation for improving kinematic manipulability’, in Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, Vol. 2, pp. 1520–1525, 1999.
[23] Riebe, S. and Ulbrich, H., ’Modelling and online computation of the dynamics of a parallel Kinematic with Six Degrees-of-Freedom’, Archive of Applied Mechanics 72, 2003, 817–829. · Zbl 1068.70512
[24] Schiehlen, W., Technische Dynamik. Stuttgart: B.G. Teubner, 1986.
[25] Takeda, Y. and Funabashi, H., ’Kinematic and static characteristics of in–parallel actuated manipulators at Singular Points and in their Neighborhood’, JSME International Journal, Series C, 39(1), 1996, 85–93.
[26] Takeda, Y. and Funabashi, H., ’Kinematic Synthesis of in–parallel actuated mechanisms based on the global isotropy index’, Journal of Robotics and Mechatronics 11(5), 1999, 404–410.
[27] Tsai, L.-W. Robot Analysis: The Mechanics of Serial and Parallel Manipulators, New York: John Wiley, 1999.
[28] Valášek, M., Šika, Z., Bauma, V. and Vampola, T., ’Design methodology for redundant parallel robots’, in Proc. of AED 2001, 2nd Int. Conf. on Advanced Engineering Design, Glasgow, pp. 243–248, 2001.
[29] Zhengyi, X., Fengfeng, X. and Mechefske, C., ’Kinetostatic analysis and optimization of a Tripod Attachment’, in Proc. of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. October 3–4, 2002, Quebec City, Canada, Gosselin, C. and Ebert-Uphoff, I. (eds.), pp. 294–303, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.