×

Review of real-time vehicle schedule recovery methods in transportation services. (English) Zbl 1305.90205

Summary: This paper presents a comprehensive review on methods for real-time schedule recovery in transportation services. The survey concentrates on published research on recovery of planned schedules in the occurrence of one or several severe disruptions such as vehicle breakdowns, accidents, and delays. Only vehicle assignment and rescheduling are reviewed; crew scheduling and passenger logistics problems during disruptions are not. Real-time vehicle schedule recovery problems (RTVSRP) are classified into three classes: vehicle rescheduling, for road-based services, train-based rescheduling, and airline schedule recovery problems. For each class, a classification of the models is presented based on problem formulations and solution strategies. The paper concludes that RTVSRP is a challenging problem that requires quick and good quality solutions to very difficult and complex situations, involving several different contexts, restrictions, and objectives. The paper also identifies research gaps to be investigated in the future, stimulating research in this area.

MSC:

90B35 Deterministic scheduling theory in operations research
90B06 Transportation, logistics and supply chain management

Software:

PESPLib
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdelghany, K., Abdelghany, A., & Ekollu, G. (2008). An integrated decision support tool for airlines schedule recovery during irregular operations. European Journal of Operational Research, 185(2), 825-848. · Zbl 1137.90535
[2] Acuna-Agost, R., Michelon, P., Feillet, D., & Gueye, S. (2011). A MILP-based local search method for the railway rescheduling problem. Networks, 57, 69-86. · Zbl 1205.90072 · doi:10.1002/net.20384
[3] Ageeva, Y. (2000). Approaches to incorporating robustness into airline scheduling. Master’s thesis. Massachusetts Institute of Technology, Cambridge.
[4] Aguiar, B., Torres, J., & Castro, A. J. M. (2011). Operational problems recovery in airlines—a specialized methodologies approach. Lecture Notes in Computer Science, 7026, 83-97. · doi:10.1007/978-3-642-24769-9_7
[5] Ahuja, R. K., Möhring, R. H., & Zaroliagis, C. D. (2009). Robust and online large scale optimization: Models and techniques for transportation systems. Berlin: Springer. · Zbl 1176.90003 · doi:10.1007/978-3-642-05465-5
[6] Amberg, B., Amberg, B., & Kliewer, N. (2012). Increasing delay-tolerance of vehicle and crew schedules in public transport by sequential, partial-integrated and integrated approaches. Procedia-Social and Behavioral Sciences, 20, 292-301. · doi:10.1016/j.sbspro.2011.08.035
[7] Andersson, T. (2006). Solving the flight perturbation problem with meta heuristics. Journal of Heuristics, 12, 37-53. · Zbl 1122.90346 · doi:10.1007/s10732-006-4833-4
[8] Andersson, T., & Värbrand, P. (2004). The flight perturbation problem. Transportation Planning and Technology, 27, 91-117. · doi:10.1080/0308106042000218195
[9] Almodóvar, M., & García-Ródenas, R. (2013). On-line reschedule optimization for passenger railways in case of emergencies. Computers & Operations Research, 40(3), 725-736. · Zbl 1349.90307 · doi:10.1016/j.cor.2011.01.013
[10] Argüello, M., Bard, J., & Yu, G. (1997). A GRASP for aircraft routing in response to groundings and delays. Journal of Combinatorial Optimization, 5, 211-228. · Zbl 0892.90122 · doi:10.1023/A:1009772208981
[11] Arora, S., & Barak, B. (2009). Computational complexity: A modern approach. Cambridge: Cambridge University Press. · Zbl 1193.68112 · doi:10.1017/CBO9780511804090
[12] Babić, O., Kalić, M., Pavković, G., Dožić, S., & Čangalović, M. (2010). Heuristic approach to the airline schedule disturbances problem. Transportation Planning and Technology, 33(3), 257-280.
[13] Bard, J., Yu, G., & Argüello, M. (2001). Optimizing aircraft routings in response to groundings and delays. IIE Transactions, 33, 931-947.
[14] Ball, M.; Barnhart, C.; Nemhauser, G.; Odoni, A.; Branhart, C. (ed.); Laporte, G. (ed.), Air transportation: Irregular operations and control, No. 14, 1-67 (2007), Amsterdam
[15] Baptiste, P., Pape, C., & Nuyten, W. (2001). Constraint-based scheduling: Applying constraint programming to scheduling problems. New York: Springer-Verlag LLC. · Zbl 1094.90002 · doi:10.1007/978-1-4615-1479-4
[16] Berger, A., Blaar, C., Gebhardt, A., Müller-Hannemann, M., & Schnee, M. (2011a). Passenger flow-oriented train disposition. Lecture Notes in Computer Science, 6942, 227-238. · Zbl 1346.90324
[17] Berger, A., Hoffmann, R., Lorenz, U., & Stiller, S. (2011b). Online railway delay management: Hardness, simulation and computation. Simulation, 87(7), 616-629. · doi:10.1177/0037549710373571
[18] Bertsimas, D., & Patterson, S. S. (2000). The traffic flow management rerouting problem in air traffic control: A dynamic network flow approach. Transportation Science, 34(3), 239-255. · Zbl 0991.90516 · doi:10.1287/trsc.34.3.239.12300
[19] Bisaillon, S., Cordeau, J.-F., Laporte, G., & Pasin, F. (2011). A large neighborhood search heuristic for the aircraft and passenger recovery problem. 4OR, A Quarterly Journal of Operations Research, 9(2), 139-157. · doi:10.1007/s10288-010-0145-5
[20] Bratu, S., & Barnhart, C. (2006). Flight operations recovery: New approaches considering passenger recovery. Journal of Scheduling, 9, 279-298. · Zbl 1154.90419 · doi:10.1007/s10951-006-6781-0
[21] Brazilian Civil Aviation Agency. (2010). Anuário do Transporte Aéreo 2010 (1st ed.). http://www2.anac.gov.br/estatistica/anuarios.asp. Accessed 10 Apr 2010.
[22] Borndörfer, R., Dovica, I., Nowak, I., & Schickinger, T. (2009). Robust tail assignment. ZIB, Report 10-08.
[23] Bunte, S., & Kliewer, N. (2009). An overview on vehicle scheduling models in public transport. Public Transport, 1(4), 299-317.
[24] Caprara, A., Galli, L., Kroon, L., Maróti, G., & Toth, P. (2010). Robust train routing and online re-scheduling. In T. Erlebach & M. Lübbecke (Eds.), 10th Workshop on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS’10) (pp. 24-33). Dagstuhl. · Zbl 1247.90171
[25] Cao, J.-M., & Kanafani, A. (1997a). A real-time decision support for integration of airline flight cancellation and delays, part I: Mathematical formulation. Transportation Planning and Technology, 20, 183-199. · doi:10.1080/03081069708717588
[26] Cao, J.-M., & Kanafani, A. (1997b). A real-time decision support for integration of airline flight cancellation and delays, part II: Algorithm and computation. Transportation Planning and Technology, 20, 201-217. · doi:10.1080/03081069708717589
[27] Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and perspectives. Transportation Science, 38(1), 1-18. · doi:10.1287/trsc.1030.0036
[28] Clarke, L. W., Hane, C. A., Johnson, E. L., & Nemhauser, G. L. (1996). Maintenance and crew considerations in fleet assignment. Transportation Science, 30(3), 249-260. · Zbl 0879.90132 · doi:10.1287/trsc.30.3.249
[29] Clausen, J., Larsen, A., Larsen, J., & Rezanova, N. J. (2010). Disruption management in the airline industry: Concepts, models and methods. Computers & Operations Research, 37(5), 809-821. · Zbl 1177.90109 · doi:10.1016/j.cor.2009.03.027
[30] Cordeau, J.-F., Toth, P., & Vigo, D. (1998). A survey of optimization models for train routing and scheduling. Transportation Science, 32(4), 380-404. · Zbl 0987.90507 · doi:10.1287/trsc.32.4.380
[31] Corman, F., D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2010). A tabu search algorithm for rerouting trains during rail operations. Transportation Research Part B: Methodological, 44(1), 175- 192. · Zbl 1162.90381
[32] D’Ariano, A. (2008). Improving real-time train dispatching: Models, algorithms and applications. Ph.D thesis. Department of Transport & Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands. · Zbl 1069.90526
[33] D’Ariano, A. D., & Pranzo, M. (2009). An advanced real-time train dispatching system for minimizing the propagation of delays in a dispatching area under severe disturbances. Networks and Spatial Economics, 9(1), 63-84. · Zbl 1162.90375 · doi:10.1007/s11067-008-9088-1
[34] D’Ariano, A., Corman, F., Pacciarelli, D., & Pranzo, M. (2008). Reordering and local rerouting strategies to manage train traffic in real-time. Transportation Science, 42(4), 405-419. · doi:10.1287/trsc.1080.0247
[35] D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2007a). A branch and bound algorithm for scheduling trains in a railway network. European Journal of Operational Research, 183(2), 643-657. · Zbl 1179.90135
[36] D’Ariano, A., Pranzo, M., & Hansen, I. A. (2007b). Conflict resolution and train speed coordination for solving real-time timetable perturbations. IEEE Transactions on Intelligent Transportation Systems, 8(2), 208-222. · Zbl 1102.90323
[37] Daduna, J. R., & Paixão, J. M. (1995). Vehicle scheduling for public mass transit—an overview. In Proceedings of the 6th international conference on computer-aided scheduling of public transport, Boston, MA, pp. 76-90. · Zbl 0853.90040
[38] Dirksen, B. J. (2011). Disruption management in liner shipping. Master’s dissertation. Technical University of Denmark.
[39] Dožić, S., Kalić, M., Babić, O., & Čangalović, M. (2009). Heuristic approach to the airline schedule disturbances problem: Multi-fleet case. In Multidisciplinary international conference on scheduling: Theory and applications (MISTA 2009). Dublin, Ireland. · Zbl 1172.90434
[40] Dück, V., Ionescu, L., Kliewer, N., & Suhl, L. (2012). Increasing stability of crew and aircraft schedules. Transportation Research Part C: Emerging Technologies, 20, 47-61. · doi:10.1016/j.trc.2011.02.009
[41] Ernst, A. T., Horn, M., Krishnamoorthy, M., Kilby, P., Degenhardt, P., & Moran, M. (2007). Static and dynamic order scheduling for recreational rental vehicles at tourism holdings limited. Interfaces, 37(4), 334-341. · doi:10.1287/inte.1060.0265
[42] Eggenberg, N., Salani, M., & Bierlaire, M. (2010). Constraint-specific recovery network for solving airline recovery problems. Computers & Operations Research, 37(6), 1014-1026. · Zbl 1178.90226 · doi:10.1016/j.cor.2009.08.006
[43] Fekete, S. P., Kroeller, A., Lorek, M. & Pfetsch, M. E. (2011). Disruption management with rescheduling of trips and vehicle circulations. In Proceedings of the 5th ASME/ASCE/IEEE Joint Rail Conference. Pueblo, Colorado, USA. · Zbl 1146.90031
[44] Filar, J. A., Manyem, P., Panton, D. M., & White, K. (2007). A model for adaptive rescheduling of flights in emergencies (MARFE). Journal of Industrial and Management Optimization, 3(2), 335-356. · Zbl 1171.90398 · doi:10.3934/jimo.2007.3.335
[45] Fischetti, M., Salvagnin, D., & Zanette, A. (2009). Fast approaches to improve the robustness of a railway timetable. Transportation Science, 43(3), 321-335. · doi:10.1287/trsc.1090.0264
[46] Freling, R., Wagelmans, A. P. M., & Paixão, J. M. P. (2001). Models and algorithms for single-depot vehicle scheduling. Transportation Science, 35(2), 165-180. · Zbl 1069.90526 · doi:10.1287/trsc.35.2.165.10135
[47] García-Ródenas, R., Almodóvar, M., & Parreño, F. (2009). Heuristic algorithm for coordination in public transport under disruptions. Lecture Notes in Computer Science, 5484, 808-817.
[48] Guarino, J., & Firestine, T. (2010). Effects of the February 2010 snowstorms on airline performance. Special Report-021, Rita Bureau of Transportation Statistics, US Department of Transportation.
[49] Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L., & Sigismondi, G. (1995). The fleet assignment problem: Solving a large-scale integer program. Mathematical Programming, 70, 211-232. · Zbl 0840.90104
[50] Herroelen, W., & Leus, R. (2004). The construction of stable project baseline schedules. European Journal of Operational Research, 156, 550-565. · Zbl 1056.90066 · doi:10.1016/S0377-2217(03)00130-9
[51] Huisman, D., & Wagelmans, A. (2006). A solution approach for dynamic vehicle and crew scheduling. European Journal of Operational Research, 172(2), 453-471. · Zbl 1120.90020 · doi:10.1016/j.ejor.2004.10.009
[52] Huisman, D., Freling, R., & Wagelmans, A. P. M. (2004). A robust solution approach to the dynamic vehicle scheduling problem. Transportation Science, 38(4), 447-458. · doi:10.1287/trsc.1030.0069
[53] Ionescu, L.; Kliewer, N.; Schramme, T.; Hu, B. (ed.); Morasch, K. (ed.); Pickl, S. (ed.); Siegle, M. (ed.), A comparison of recovery strategies for crew and aircraft schedules, 269-274 (2010), Berlin · Zbl 1421.90077
[54] Jafari, N., & Zegordi, S. H. (2011). Simultaneous recovery model for aircraft and passengers. Journal of the Franklin Institute, 348, 1638-1655. · Zbl 1233.90158 · doi:10.1016/j.jfranklin.2010.03.012
[55] Jarrah, A., Yu, G., Krishnamurthy, N., & Rakshit, A. (1993). A decision support framework for airline flight cancellation and delays. Transportation Science, 27, 266-280. · doi:10.1287/trsc.27.3.266
[56] Jespersen-Groth, J.; Potthoff, D.; Clausen, J.; Huisman, D.; Kroon, L.; Gábor, M.; Nielsen, MN; etal.; Ahuja, RK (ed.), Disruption management in passenger railway transportation, 399-421 (2009), Berlin · Zbl 1266.90043 · doi:10.1007/978-3-642-05465-5_18
[57] Kliewer, N., Mellouli, T., & Suhl, L. (2006). A time-space network based exact optimization model for multi-depot bus scheduling. European Journal of Operational Research, 175(3), 1616- 1627. · Zbl 1142.90354 · doi:10.1016/j.ejor.2005.02.030
[58] Kohl, N., Larsen, A., Larsen, J., Ross, A., & Tiourine, S. (2007). Airline disruption management—perspectives, experiences and outlook. Journal of Air Transport Management, 13(3), 149-162. · doi:10.1016/j.jairtraman.2007.01.001
[59] Kramkowski, S., Kliewer, N., & Meier, C. (2009). Heuristic methods for increasing delay-tolerance of vehicle schedules in public bus transport. In Proceedings of the metaheuristic international conference VIII. Hamburg, Germany. · Zbl 1209.90045
[60] Kroon, L. G. & Huisman, D. (2011). Algorithmic support for disruption management at Netherlands Railways. Econometric Institute Report. EI 2011-06. Econometric Institute, Erasmus University, Rotterdam.
[61] Lan, S., Clarke, J.-P., & Barnhart, C. (2006). Planning for robust airline operations: Optimizing aircraft routings and flight departure times to minimize passenger disruptions. Transportation Science, 40(1), 15-28. · doi:10.1287/trsc.1050.0134
[62] Lee, L. H., Lee, U. C., & Tan, Y. P. (2007). A multi-objective genetic algorithm for robust flight scheduling using simulation. European Journal of Operational Research, 177, 1948-1968. · Zbl 1102.90323 · doi:10.1016/j.ejor.2005.12.014
[63] Leus, R., & Herroelen, W. (2005). The complexity of machine scheduling for stability with a single disrupted job. Operations Research Letters, 33(2), 151-156. · Zbl 1099.90020 · doi:10.1016/j.orl.2004.04.008
[64] Li, J. Q., Borenstein, D., & Mirchandani, P. B. (2008). Truck schedule recovery for solid waste collection in Porto Alegre. International Transactions in Operational Research, 15, 565-582. · Zbl 1172.90434 · doi:10.1111/j.1475-3995.2008.00648.x
[65] Li, J. Q., Mirchandani, P. B., & Borenstein, D. (2004). Parallel auction algorithm for bus rescheduling. In Proceedings of ninth international conference on computer-aided scheduling of public transport. San Diego, CA. · Zbl 1279.90069
[66] Li, J. Q., Mirchandani, P. B., & Borenstein, D. (2007a). The vehicle rescheduling problem: Model and algorithms. Networks, 50(3), 211-229. · Zbl 1146.90031 · doi:10.1002/net.20199
[67] Li, J., Borenstein, D., & Mirchandani, P. B. (2007b). A decision support system for the single-depot vehicle rescheduling problem. Computers & Operations Research, 34(4), 1008-1032. · Zbl 1102.90325 · doi:10.1016/j.cor.2005.05.022
[68] Li, J. Q., Mirchandani, P. B., & Borenstein, D. (2009). A Lagrangian heuristic for the real-time vehicle rescheduling problem. Transportation Research Part E: Logistics and Transportation Review, 45(3), 419-433. · doi:10.1016/j.tre.2008.09.002
[69] Liu, T. K., Chen, C. H., & Chou, J. H. (2010). Optimization of short-haul aircraft schedule recovery problems using a hybrid multiobjective genetic algorithm. Expert Systems with Applications, 37(3), 2307-2315. · doi:10.1016/j.eswa.2009.07.068
[70] Liu, T. K., Jeng, C. R., & Chang, Y. H. (2008). Disruption management of an inequality-based multi-fleet airline schedule by a multi-objective genetic algorithm. Transportation Planning and Technology, 31(6), 613-639. · doi:10.1080/03081060802492652
[71] Lombardi, M., & Milano, M. (2012). Optimal methods for resource allocation and scheduling: A cross disciplinary survey. Constraints, 17(1), 51-85. · doi:10.1007/s10601-011-9115-6
[72] Løve, M., Sørensen, K. R., Larsen, J., & Clausen, J. (2002). Disruption management for an airline—rescheduling of aircraft. In EvoWorkshops 2002, LNCS 2279 (pp. 315-324). Berlin, Heidelberg: Springer-Verlag. · Zbl 1044.90508
[73] Luethi, M., Medeossi, G., & Nash, A. (2009). Structure and simulation evaluation of an integrated real-time rescheduling system for railway networks. Networks and Spatial Economics, 9(1), 103-121. · Zbl 1162.90381 · doi:10.1007/s11067-008-9085-4
[74] Mathaisel, D. (1996). Decision support for airline system operations control and irregular operations. Computers and Operations Research, 23, 1083-1098. · Zbl 0867.90070 · doi:10.1016/0305-0548(96)00007-X
[75] Mascis, A., & Pacciarelli, D. (2000). Machine scheduling via alternative graphs. Working paper, Dipartamento di Informatica e Automazione, Università degli Studi Roma, Tré, Italy. · Zbl 1082.90528
[76] Mascis, A., & Pacciarelli, D. (2002). Job shop scheduling with blocking and no-wait constraints. European Journal of Operational Research, 143(3), 498-517. · Zbl 1082.90528 · doi:10.1016/S0377-2217(01)00338-1
[77] Meng, X., Jia, L., & Qin, Y. (2010). Train timetable optimizing and rescheduling based on improved particle swarm algorithm. Transportation Research Record: Journal of the Transportation Research Board, 2197(1), 71-79. · doi:10.3141/2197-09
[78] Mukherjee, A., & Hansen, M. (2009). A dynamic rerouting model for air traffic flow management. Transportation Research Part B: Methodological, 43(1), 159-171. · doi:10.1016/j.trb.2008.05.011
[79] Nielsen, L. K. (2008). A decision support framework for rolling stock rescheduling. Technical report ARRIVAL-TR-0158.
[80] Nielsen, L. K. (2011). Rolling stock rescheduling in passenger railways—applications in short-term planning and in disruption management. PhD thesis. Erasmus University, Rotterdam, The Netherlands. · Zbl 1253.90118
[81] Norio, T., Yoshiaki, T., Noriyuki, T., Chikara, H., & Kunimitsu, M. (2005). Train rescheduling algorithm which minimizes passengers’ dissatisfaction. Lecture Notes in Computer Science, 3533, 829-838.
[82] Petersen, J. D., Gustaf, S., Johnson, E. L., Clarke, J. P., & Shebalov, S. (2012). An optimization approach to airline integrated recovery system. Transportation Science, 46(4), 482-500.
[83] Potthoff, D., Huisman, D., & Desaulniers, G. (2010). Column generation with dynamic duty selection for railway crew rescheduling. Transportation Science, 44(4), 493-505. · doi:10.1287/trsc.1100.0322
[84] Raheja, A. S., & Subramaniam, V. (2002). Reactive recovery of job shop schedules—a review. International Journal of Advanced Manufacturing Technology, 19, 756-763. · doi:10.1007/s001700200087
[85] Rangsaritratsamee, R., Ferrel, W. G., & Kurtz, M. B. (2004). Dynamic scheduling that simultaneously considers efficiency and stability. Computers & Industrial Engineering, 46, 1-15. · doi:10.1016/j.cie.2003.09.007
[86] Rosenberger, J. M., Johnson, E. L., & Nemhauser, G. L. (2003). Rerouting aircraft for airline recovery. Transportation Science, 37(4), 408-421. · doi:10.1287/trsc.37.4.408.23271
[87] Sahin, I. (1999). Railway traffic control and train scheduling based on inter-train conflict management. Transportation Reseacrh: Part B, 33, 511-534. · doi:10.1016/S0191-2615(99)00004-1
[88] Sato, K., & Fukumura, N. (2012). Real-time freight locomotive rescheduling and uncovered train detection during disruption. European Journal of Operational Research, 221, 636-648. · Zbl 1253.90118 · doi:10.1016/j.ejor.2012.04.025
[89] Sato, T., Shuichiro, S., Morita, T., Ueki, N. & Murata, T. (2009). Crew and vehicle rescheduling based on a network flow model and its application to a railway train operation. IAENG International Journal of Applied Mathematics, 39(3), IJAM \[\_39\_2\]_39_2. · Zbl 1349.90307
[90] Sato, T., Tomiyama, T., Morita, T. & Murata, T. (2010). Lagrangian relaxation method for network flow modeled crew and vehicle rescheduling. In Proceedings of the 2nd international conference on advanced computer control (ICACC) (pp. 403-408).
[91] Serafini, P., & Ukovich, W. (1989). A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2(4), 550-581. · Zbl 0676.90030 · doi:10.1137/0402049
[92] Steinzen, I. (2007). Topics in integrated vehicle and crew scheduling in public transit. PhD thesis. University of Paderborn, Germany.
[93] Steinzen, I., Gintner, V., Suhl, L., & Kliewer, N. (2010). A time-space network approach for the integrated vehicle-and crew-scheduling problem with multiple depots. Transportation Science, 44(3), 367-382. · doi:10.1287/trsc.1090.0304
[94] Strotmann, C. (2007). Railway scheduling problems and their decomposition. Ph.D. thesis. Universität Osnabrück, Germany. · Zbl 1197.90006
[95] SunTran (2011, July). SunTran Monthly report.
[96] Swedish Transport Administration. (2011). Annual Report 2011. http://publikationswebbutik.vv.se/upload/6814/2012_083_swedish_transport_administration_annual_report_2011.pdf. Accessed 10 Apr 2010.
[97] Teodorovic, D., & Guberinic, S. (1984). Optimal dispatching strategy on an airline network after a schedule perturbation. European Journal of the Operational Research, 15, 178-182. · Zbl 0527.90062 · doi:10.1016/0377-2217(84)90207-8
[98] Thengvall, B., Bard, J. F., & Yu, G. (2000). Balancing user preferences for aircraft schedule recovery during irregular operations. IIE Transactions, 32, 181-193.
[99] Thengvall, B., Bard, J. F., & Yu, G. (2003). A bundle algorithm approach for the aircraft schedule recovery problem. Transportation Science, 37, 392-407. · doi:10.1287/trsc.37.4.392.23281
[100] Thengvall, B., Yu, G., & Bard, J. F. (2001). Multiple fleet aircraft schedule recovery following hub closures. Transportation Research Part A, 35, 289-308.
[101] Törnquist, J. (2006). Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms. In Proceedings of the 5th workshop on algorithmic methods and models for optimization of railways (ATMOS 2005).
[102] Tornquist, J., & Persson, J. (2007). N-tracked railway traffic re-scheduling during disturbances. Transportation Research Part B: Methodological, 41(3), 342-362. · doi:10.1016/j.trb.2006.06.001
[103] Veelenturf, L. P., Potthoff, D., Huisman, D., & Kroon, L. G. (2012). Railway crew rescheduling with retiming. Transportation Research Part C: Emerging Technologies, 20(1), 95-110. · doi:10.1016/j.trc.2010.09.008
[104] Wallace, M. (1996). Practical applications of constraint programming. Constraints: An International Journal, 1, 139-168. · doi:10.1007/BF00143881
[105] Weide, O., Ryan, D., & Ehrgott, M. (2009). An iterative approach to robust and integrated aircraft routing and crew scheduling. Computers & Operations Research, 37, 833-844. · Zbl 1177.90190 · doi:10.1016/j.cor.2009.03.024
[106] Yan, S., & Yang, D.-H. (1996). A decision support framework for handling schedule perturbations. Transportation Research Part B: Methodological, 30, 405-419. · doi:10.1016/0191-2615(96)00013-6
[107] Luo, S., & Yu, G. (1997). On the airline schedule perturbation problem caused by the ground delay program. Transportation Science, 31(4), 298-311. · Zbl 0920.90090 · doi:10.1287/trsc.31.4.298
[108] Zegordi, S. H., & Jafari, N. (2010). Solving the airline recovery problem by using ant colony optimization. International Journal of Industrial Engineering & Production Research, 21(3), 121-128.
[109] Zwaneveld, P. J., Kroon, L. G., Romejinn, H. E., Salomon, M., Dauzere-Peres, S., van Hoesel, C. P. M., et al. (1996). Routing trains through railway stations: Model formulation and algorithm. Transportation Science, 30, 181-194. · Zbl 0884.90079 · doi:10.1287/trsc.30.3.181
[110] Zwaneveld, P. J., Kroon, L. G., & van Hoesel, C. P. M. (2001). Routing trains through a railway station based on a node packing model. European Journal of Operations Research, 128, 14-33. · Zbl 0982.90004 · doi:10.1016/S0377-2217(00)00087-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.