×

Design and flight testing of a digital optimal control general aviation autopilot. (English) Zbl 0554.93048

This paper presents the designs of proportional-integral-filter (PIF) autopilots for a General Aviation (NAVION) aircraft. The PIF autopilots use modern control theory to determine heading select and altitude select and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback; command error integration for command tracking; digital complementary filtering and analog prefiltering for sensor noise suppression; a control filter for computation delay accommodation; and the incremental form to eliminate trim values in implementation.

MSC:

93C57 Sampled-data control/observation systems
93B50 Synthesis problems
93D15 Stabilization of systems by feedback
70Q05 Control of mechanical systems
93B40 Computational methods in systems theory (MSC2010)
93C55 Discrete-time control/observation systems

Software:

ORACLS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Armstrong, E. S., ORACLS—Design System for Linear Multivariable Control (1980), Marcel-Dekker: Marcel-Dekker New York · Zbl 0476.93001
[2] Broussard, J. R., Design, implementation and flight testing of PIF autopilots for General Aviation aircraft, NASA CR-3709 (1983)
[3] Broussard, J. R., PIGCGT—A PIF autopilot design program for General Aviation aircraft, NASA CR-166123 (1983)
[4] Broussard, J. R.; Berry, P. W.; Stengel, R. F., Modern digital flight control system design for VTOL aircraft, NASA CR-159019 (1979)
[5] Broussard, J. R.; O’Brien, M. J., Feedforward control to track the output of a forces model, IEEE Trans. Aut. Control, AC-25, 851 (1980) · Zbl 0449.93030
[6] Dorato, P.; Levis, A. H., Optimal linear regulators: the discrete-time case, IEEE Trans. Aut. Control, AC-16, 613 (1971)
[7] Downing, D. R.; Bryant, W. H.; Ostroff, A. J., Flight test of a VTOL digital autoland system along complex trajectories, (Proceedings of the 1979 AIAA Guidance and Control Conference. Proceedings of the 1979 AIAA Guidance and Control Conference, Boulder, Colorado (1979))
[8] Downing, D. R.; Bryant, W. H.; Stengel, R. F., NASA/Princeton digital avionics flight test facility, (Proceedings of the 3rd Digital Avionics Systems Conference. Proceedings of the 3rd Digital Avionics Systems Conference, Fort Worth, Texas (1979))
[9] Doyle, J. C.; Stein, G., Multivariable feedback design: concepts for a classical modern synthesis, IEEE Trans. Aut. Control, AC-26, 4 (1981) · Zbl 0462.93027
[10] Halyo, N.; Broussard, J. R., A convergent algorithm for the stochastic infinite-time discrete optimal output feedback problem, (Joint Automatic Control Conference. Joint Automatic Control Conference, Charlottesville, Virginia (1981))
[11] Larson, G. C., The Future of ‘Autopilots’ (1981), Business and Commercial Aviation
[12] Maybeck, P. S., (Stochastic Models, Estimation and Control, Vol 3 (1982), Academic Press: Academic Press New York) · Zbl 0546.93063
[13] McGough, J. G.; Moses, K.; Kalfin, J. F., Advanced flight control study, NASA CR 153120 (1982)
[14] McRuer, D. T.; Johnston, D. E., Flight control systems properties and problems, NASA CR-2500 (1975)
[15] O’Reilly, J., Optimal Instantaneous Output Feedback Controllers for Discrete-Time Systems with Inaccessible States, Int. J. System Sci., 9, 9 (1978) · Zbl 0371.93005
[16] Roskam, J., Airplane Flight Dynamics and Automatic Flight Controls (1979), Roskam Aviation Engineering Corp: Roskam Aviation Engineering Corp Lawrence, Kansas, Part I and II
[17] Suit, W., Aerodynamic parameters of the NAVION airplane extracted from flight data, NASA TN D-6643 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.