Bosworth, Ken W.; Lall, Upmanu LOWLAD: A locally weighted \(L_ 1\) smoothing spline algorithm with cross validated choice of smoothing parameters. (English) Zbl 0828.65010 Numer. Algorithms 9, No. 1-2, 85-106 (1995). The authors explore to extend the nonparametric estimator known as the \(L_1\) or least absolute deviations (LAD) smoothing spline to situations where a locally “windowed” robust smoother, similar to the lowest smoother of W. S. Cleveland, S. J. Devlin and E. Grosse [J. Econometrics 37, No. 1, 87-114 (1988; M.R. 89a:62157)] is called for. Complementing this windowed smoothing spline is a cross validation (CV) score which allows the data at hand to select the proper degree of smoothing within the local window, and to select the proper size window.An algorithm scheme, coupling the computation of the local LAD smoothing spline with the CV-dictated optimal choice of the smoothing parameters is presented. For background material on smoothing splines see for example G. Wahba [Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, Philadelphia, PA: SIAM, XII (1990; Zbl 0813.62001)]. Reviewer: H.P.Dikshit (Jabalpur) MSC: 65D10 Numerical smoothing, curve fitting 65D07 Numerical computation using splines 65C99 Probabilistic methods, stochastic differential equations 62J05 Linear regression; mixed models Keywords:robust regression; smoothing and regression splines; least absolute deviations smoothing spline; choice of smoothing parameters; cross validation Citations:Zbl 0813.62001 Software:GAMS; FSQP; LINPACK; NPSOL; LOWLAD PDF BibTeX XML Cite \textit{K. W. Bosworth} and \textit{U. Lall}, Numer. Algorithms 9, No. 1--2, 85--106 (1995; Zbl 0828.65010) Full Text: DOI References: [1] P.M. Anselone and P.J. Laurent, A general method for the construction of interpolating or smoothing spline-functions, Numer. Math. 12 (1968) 66–82. · Zbl 0197.13501 [2] P. Bloomfield and W.L. Steiger,Least Absolute Deviations: Theory, Applications, and Algorithms, volume 6 ofProgress in Probability and Statistics (Birkhauser, Boston, 1983). · Zbl 0536.62049 [3] K.W. Bosworth and U. Lall, Anl 1 smoothing spline algorithm with cross validation, Numer. Algor. 5 (1993) 407–417. · Zbl 0796.65006 [4] L. Breiman, The {\(\Pi\)} method for estimating multivariate functions from noisy data, Technometrics 33 (1991) 125–160. · Zbl 0742.62037 [5] A. Brooke, D. Kendrick and A. Meeraus,GAMS: a User’s Guide (Scientific Press, 1988). [6] A. Buja, T. Hastie and R. Tibshirani, Linear smoothers and additive models, Ann. Statist. 17 (1989) 453–555. · Zbl 0689.62029 [7] W.S. Cleveland, S.J. Devlin and E. Grosse, Regression by local fitting, J. Econometrics 37 (1988) 87–114. [8] N. Cressie, Kriging nonstationary data, J. Amer. Statist. Assoc.: Applications 81(395) (1986) 625–634. · Zbl 0625.62086 [9] F. de Hoog and M. Hutchinson, An efficient method for calculating smoothing splines using orthogonal transformations, Numer. Math. 50 (1987) 311–319. · Zbl 0633.65011 [10] J. Dongarra, J. Bunch, C. Moler and G. Stewart,Linpack Users’ Guide, Society for Industrial and Applied Mathematics (1979). [11] J. Friedman, Multivariate adaptive regression splines, Ann. Statist. 19 (1991) 1–141. · Zbl 0765.62064 [12] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, User’s guide for npsol (version 4.0). Technical report, Department of Operations Research, Stanford University SOL 86-2 (1986). [13] M. Hutchinson and F. de Hoog. Smoothing noisy data with spline functions, Numer. Math. 47 (1985) 96–106. · Zbl 0578.65009 [14] C. Jennen-Steinmetz and T. Gasser, A unifying approach to nonparametric regression estimation, J. Amer. Statist. Assoc.: Theory and Methods 83(404) (1988) 1084–1089. · Zbl 0673.62034 [15] J. Keener,Principles of Applied Mathematics (Addison-Wesley, 1988). · Zbl 0649.00002 [16] C.A. Michelli, Interpolation of scattered data: Distance matrices and conditionally positive definite matrices, In S. P. Singh et al. (eds.),Approximation Theory and Spline Functions (D. Reidel, 1984) pp. 143–145. [17] H.-G. Müller and U. Stadtmüller. Variable bandwidth kernel estimators of regression curves, Ann. Statist. 15(1) (1987) 182–201. · Zbl 0634.62032 [18] H.-G. Müller, Weighted regression and kernel methods for nonparametric curve fitting, J. Amer. Statist. Assoc. 82(397) (1987) 231–238. · Zbl 0632.62039 [19] G. Nielson, Multivariate smoothing and interpolating splines, SIAM J. Numer. Anal. 11(2) (1974) 435–446. · Zbl 0286.65003 [20] E. Quak and N. Weyrich, Decomposition and reconstruction algorithms for spline wavelets on a bounded interval, Technical report, Center for Approximation Theory, Texas A. & M. University, CAT Report 294 (1993). · Zbl 0804.65143 [21] R.T. Rockafellar,Convex Analysis (Princeton, 1970). · Zbl 0193.18401 [22] G. Wahba,Spline Models for Observational Data (SIAM, 1990). · Zbl 0813.62001 [23] G.A. Watson,Approximation Theory and Numerical Methods (Wiley, 1980). · Zbl 0442.65005 [24] S. J. Yakowitz and F. Szidarovsky, A comparison of kriging with nonparametric regression methods, J. Multivar. Anal. 16(1) (1985) 21–53. · Zbl 0591.62060 [25] J.L. Zhou and A. Tits, User’s guide for fsqp version 3.0: A FORTRAN code for solving constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality and linear constraints, Technical Report TR-90-60rlf, Univ. of MD. S.R.C. (1990) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.