×

sppmix: Poisson point process modeling using normal mixture models. (English) Zbl 1417.62009

Summary: This paper describes the package sppmix for the statistical environment R. The sppmix package implements classes and methods for modeling spatial point patterns using inhomogeneous Poisson point processes, where the intensity surface is assumed to be a multiple of a finite additive mixture of normal components and the number of components is a finite, fixed or random integer. Extensions to the marked inhomogeneous Poisson point processes case are also presented. We provide an extensive suite of R functions that can be used to simulate, visualize and model point patterns, estimate the parameters of the models, assess convergence of the algorithms and perform model selection and checking in the proposed modeling context. In addition, several approaches have been implemented in order to handle the standard label switching issue which arises in any modeling approach involving mixture models. We adapt a hierarchical Bayesian framework in order to model the intensity surfaces and have implemented two major algorithms in order to estimate the parameters of the mixture models involved: the data augmentation and the birth-death Markov chain Monte Carlo (DAMCMC and BDMCMC). We used C++ (via the Rcpp package) in order to implement the most computationally intensive algorithms.

MSC:

62-04 Software, source code, etc. for problems pertaining to statistics
62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62F15 Bayesian inference
65C40 Numerical analysis or methods applied to Markov chains
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Baddeley A, Turner R (2005) spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12(6):1-42. http://www.jstatsoft.org/v12/i06/
[2] Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. CRC Press, Boca Raton · Zbl 1357.62001
[3] Barndorff-Nielsen OE, Kendall WS, van Lieshout MNM (1999) Stochastic geometry, likelihood and computation. Chapman and Hall, London
[4] Benes V, Bodlak K, Møller J, Waagepetersen RP (2005) A case study on point process modelling in disease mapping. Image Anal Stereol 24:159-168 · Zbl 1160.62360
[5] Berliner L (1996) Hierarchical Bayesian time-series models. Fund Theor Phys 79:15-22 · Zbl 0886.62080
[6] Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York. http://www.asdar-book.org/ · Zbl 1269.62045
[7] Cappé O, Robert CP, Rydén T (2003) Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers. J R Stat Soc B 65:679-700 · Zbl 1063.62133
[8] Chakraborty A, Gelfand AE (2010) Measurement error in spatial point patterns. Bayesian Anal 5:97-122 · Zbl 1330.65028
[9] Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications, 3rd edn. Wiley, London · Zbl 1291.60005
[10] Celeux G, Hurn M, Robert CP (2000) Computational and inferential difficulties with mixture posterior distributions. J Am Stat Assoc 95(451):957-970 · Zbl 0999.62020
[11] Cressie N (1993) Statistics for spatial data, 2nd edn. Wiley, London · Zbl 1347.62005
[12] Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken · Zbl 1273.62017
[13] Daley DJ, Vere-Jones D (2005) An introduction to the theory of point processes, volume I: elementary theory and methods, 2nd edn. Springer, New York · Zbl 1026.60061
[14] Daley DJ, Vere-Jones D (2008) An introduction to the theory of point processes, volume II: general theory and structure, 2nd edn. Springer, New York · Zbl 1159.60003
[15] Dellaportas P, Papageorgiou I (2006) Multivariate mixtures of normals with unknown number of components. Stat Comput 16:57-68
[16] Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1-38 · Zbl 0364.62022
[17] Diebolt J, Robert CP (1994) Estimation of finite mixture distributions by Bayesian sampling. J R Stat Soc B 56:363-375 · Zbl 0796.62028
[18] Diggle PJ (2013) Statistical analysis of spatial and spatio-temporal point patterns, 3rd edn. Chapman and Hall, London · Zbl 1435.62004
[19] Diggle PJ, Moraga P, Rowlingson B, Taylor BM (2013) Spatial and spatio-temporal log-gaussian cox processes: extending the geostatistical paradigm. Stat Sci 28(4):542-563 · Zbl 1331.86027
[20] Eddelbuettel D, Sanderson C (2014) RcppArmadillo: accelerating R with high-performance C++ linear algebra. Comput Stat Data Anal 71:1054-1063 · Zbl 1471.62055
[21] Eddelbuettel D, François R, Allaire J, Chambers J, Bates D, Ushey K (2011) Rcpp: seamless R and C++ integration. J Stat Softw 40(8):1-18
[22] Escobar M, West M (1995) Bayesian density estimation and inference using mixtures. J Am Stat Assoc 90:577-588 · Zbl 0826.62021
[23] Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, Berlin · Zbl 1108.62002
[24] Gelfand AE, Diggle PJ, Fuentes M, Guttorp P (eds) (2010) Handbook of spatial statistics. CRC Press, Boca Raton · Zbl 1188.62284
[25] Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711-732 · Zbl 0861.62023
[26] Hossain MM, Lawson AB (2009) Approximate methods in Bayesian point process spatial models. Comput Stat Data Anal 53:2831-2842 · Zbl 1453.62113
[27] Jasra A, Holmes CC, Stephens DA (2005) Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture. Stat Sci 20:50-67 · Zbl 1100.62032
[28] Ji C, Merly D, Keplerz TB, West M (2009) Spatial mixture modelling for unobserved point processes: examples in immunofluorescence histology. Bayesian Anal 4:297-316 · Zbl 1330.62355
[29] Illian JB, Hendrichsen DK (2009) Gibbs point process models with mixed effects. Environmetrics. https://doi.org/10.1002/env.1008
[30] Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester · Zbl 1197.62135
[31] Illian J, Sørbye S, Rue H (2012) A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann Appl Stat 6(4):1499-1530 · Zbl 1257.62093
[32] Keribin C, Brault V, Celeux G, Govaert G (2015) Estimation and selection for the latent block model on categorical data. Stat Comput 25(6):1201-1216 · Zbl 1331.62149
[33] Kottas A, Sanso B (2007) Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. J Stat Plan Inference 137:3151-3163 (Special issue on Bayesian inference for stochastic processes) · Zbl 1114.62100
[34] Liang S, Carlin BP, Gelfand AE (2009) Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information. Ann Appl Stat 3:943-962 · Zbl 1196.62143
[35] Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the SPDE approach. J R Stat Soc Ser B. https://doi.org/10.1111/j.1467-9868.2011.00777.x · Zbl 1274.62360
[36] Marin J-M, Mengersen K, Robert CP (2005) Bayesian modeling and inference on mixtures of distributions. Handb Stat 25:459-507
[37] McLachlan G, Peel D (2000) Finite mixture models. Wiley-Interscience, New York · Zbl 0963.62061
[38] Micheas AC, Wikle CK, Larsen DR (2012) Random set modelling of three dimensional objects in a hierarchical Bayesian context. J Stat Comput Simul. https://doi.org/10.1080/00949655.2012.696647
[39] Micheas AC (2014) Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information. J Appl Stat 41(12):2596-2615 · Zbl 1514.62759
[40] Møller J, Waagepetersen RP (2004) Statistical inference and simulation for spatial point processes. Chapman and Hall, Boca Raton · Zbl 1044.62101
[41] Møller J, Waagepetersen RP (2007) Modern statistics for spatial point processes. Scand J Stat. https://doi.org/10.1111/j.1467-9469.2007.00569.x · Zbl 1157.62067
[42] Møller J, Helisova K (2010) Likelihood inference for unions of interacting discs. Scand J Stat 37:365-381 · Zbl 1226.60016
[43] Nychka D, Furrer R, Paige J, Sain S (2015) Fields: tools for spatial data. R package version 9.0. https://doi.org/10.5065/D6W957CT, www.image.ucar.edu/fields
[44] Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2). https://cran.r-project.org/doc/Rnews/ · Zbl 1514.68001
[45] R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
[46] Rathbun SL, Shiffman S, Gwaltney CJ (2007) Modelling the effects of partially observed covariates on Poisson process intensity. Biometrika. https://doi.org/10.1093/biomet/asm009 · Zbl 1142.62391
[47] Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). J R Stat Soc Ser B 59:731-792 · Zbl 0891.62020
[48] Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, Berlin · Zbl 1096.62003
[49] Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J R Stat Soc B 71:319-392 · Zbl 1248.62156
[50] Sethuraman J (1994) A constructive definition of Dirichlet priors. Stat Sin 4:639-650 · Zbl 0823.62007
[51] Scricciolo C (2006) Convergence rates for Bayesian density estimation of infinite-dimensional exponential families. Ann Stat 34:2897-2920. https://doi.org/10.1214/009053606000000911 · Zbl 1114.62043
[52] Spodarev E (2013) Stochastic geometry, spatial statistics and random fields. Springer, Berlin · Zbl 1258.60007
[53] Stephens M (1997) Bayesian methods for mixtures of normal distributions. Ph.D. thesis, University of Oxford
[54] Stephens M (2000) Bayesian analysis of mixture models with an unknown number of components—an alternative to reversible jump methods. Ann Stat 28:40-74 · Zbl 1106.62316
[55] Tanner M, Wong W (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82:528-550 · Zbl 0619.62029
[56] Taylor BM, Diggle PJ (2014) INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. J Stat Comput Simul 84(10):2266-2284 · Zbl 1453.62214
[57] Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2013) lgcp: Inference with spatial and spatio-temporal log-Gaussian Cox processes in R. J Stat Softw 52(4). http://www.jstatsoft.org/v52/i04
[58] Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2015) Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R. J Stat Softw 63(7):1-48. http://www.jstatsoft.org/v63/i07/
[59] Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New York · Zbl 1170.62004
[60] Wikle CK, Berliner L, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5(2):117-154
[61] Wikle CK, Anderson CJ (2003) Climatological analysis of tornado report counts using a hierarchical Bayesian spatiotemporal model. J Geophys Res 108(24):9005. https://doi.org/10.1029/2002JD002806
[62] Wolpert R, Ickstadt K (1998) Poisson/gamma random field models for spatial statistics. Biometrika 85:251-267 · Zbl 0951.62082
[63] Yao W (2012) Model based labeling for mixture models. Stat Comput 22:337-347. https://doi.org/10.1007/s11222-010-9226-8 · Zbl 1322.62047
[64] Zhou Z, Matteson DS, Woodard DB, Henderson SG, Micheas AC (2015) A spatio-temporal point process model for ambulance demand. J Am Stat Assoc 110(509):6-15
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.