×

An image copy-move forgery detection scheme based on A-KAZE and SURF features. (English) Zbl 1425.94032

Summary: The popularity of image editing software has made it increasingly easy to alter the content of images. These alterations threaten the authenticity and integrity of images, causing misjudgments and possibly even affecting social stability. The copy-move technique is one of the most commonly used approaches for manipulating images. As a defense, the image forensics technique has become popular for judging whether a picture has been tampered with via copy-move, splicing, or other forgery techniques. In this paper, a scheme based on accelerated-KAZE (A-KAZE) and speeded-up robust features (SURF) is proposed for image copy-move forgery detection (CMFD). It is difficult for most keypoint-based CMFD methods to obtain sufficient points in smooth regions. To remedy this defect, the response thresholds for the A-KAZE and SURF feature detection stages are set to small values in the proposed method. In addition, a new correlation coefficient map is presented, in which the duplicated regions are demarcated, combining filtering and mathematical morphology operations. Numerous experiments are conducted to demonstrate the effectiveness of the proposed method in searching for duplicated regions and its robustness against distortions and post-processing techniques, such as noise addition, rotation, scaling, image blurring, joint photographic expert group (JPEG) compression, and hybrid image manipulation. The experimental results demonstrate that the performance of the proposed scheme is superior to that of other tested CMFD methods.

MSC:

94A13 Detection theory in information and communication theory
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Samadzadegan, F.; Hasani, H.; Schenk, T.; Determination of optimum classifier and feature subset in hyperspectral images based on ant colony system; Photogramm. Eng. Remote Sens.: 2012; Volume 78 ,1261-1273.
[2] Nagarajan, S.; Schenk, T.; Feature-based registration of historical aerial images by area minimization; ISPRS J. Photogramm. Remote Sens.: 2016; Volume 116 ,15-23.
[3] Klinger, T.; Rottensteiner, F.; Heipke, C.; Probabilistic multi-person localisation and tracking in image sequences; ISPRS J. Photogramm. Remote Sens.: 2017; Volume 127 ,73-88.
[4] Janowski, A.; Nagrodzka-Godycka, K.; Szulwic, J.; Ziółkowski, P.; Remote sensing and photogrammetry techniques in diagnostics of concrete structures; Comput. Concr.: 2016; Volume 18 ,405-420.
[5] GIMP—GNU Image Manipulation Program; ; .
[6] Photoshop; ; .
[7] Lin, X.; Li, J.H.; Wang, S.L.; Liew, A.W.C.; Cheng, F.; Huang, X.S.; Recent advances in passive digital image security forensics: A brief review; Engineering: 2018; Volume 4 ,29-39.
[8] Ziaullah, M.; Shetty, P.; Kamal, S.; Image feature based authentication and digital signature for wireless data transmission; Proceedings of the 6th International Conference on Computer Communication and Informatics: ; .
[9] Liu, Z.H.; Huang, J.W.; Sun, X.M.; Qi, C.D.; A security watermark scheme used for digital speech forensics; Multimedia Tools Appl: 2017; Volume 76 ,9297-9317.
[10] Wang, Q.; Zhang, R.; Double JPEG compression forensics based on a convolutional neural network; EURASIP J. Inf. Secur.: 2016; Volume 2016 ,23.
[11] Chen, J.S.; Kang, X.G.; Liu, Y.; Wang, Z.J.; Median filtering forensics based on convolutional neural networks; IEEE Signal Process Lett.: 2015; Volume 22 ,1849-1853.
[12] Fridrich, J.; Soukal, D.; Lukáš, J.; Detection of copy-move forgery in digital images; Proceedings of the Digital Forensic Research Workshop: ; ,55-61.
[13] Huang, Y.P.; Lu, W.; Sun, W.; Long, D.Y.; Improved DCT-based detection of copy-move forgery in images; Forensic Sci. Int.: 2011; Volume 206 ,178-184.
[14] Bi, X.L.; Pun, C.M.; Yuan, X.C.; Multi-level dense descriptor and hierarchical feature matching for copy-move forgery detection; Inf. Sci.: 2016; Volume 345 ,226-242.
[15] Zhong, J.L.; Gan, Y.F.; Young, J.; Huang, L.; Lin, P.Y.; A new block-based method for copy move forgery detection under image geometric transforms; Multimedia Tools Appl.: 2017; Volume 76 ,14887-14903.
[16] Zhong, J.L.; Gan, Y.F.; Detection of copy-move forgery using discrete analytical Fourier-Mellin transform; Nonlinear Dyn.: 2016; Volume 84 ,189-202. · Zbl 1354.94007
[17] Cozzolino, D.; Poggi, G.; Verdoliva, L.; Efficient dense-field copy-move forgery detection; IEEE Trans. Inf. Forensics Secur.: 2015; Volume 10 ,2284-2297.
[18] Deng, J.H.; Yang, J.X.; Weng, S.W.; Gu, G.S.; Li, Z.; Copy-move forgery detection robust to various transformation and degradation attacks; KSII Trans. Internet Inf. Syst.: 2018; Volume 12 ,4467-4486.
[19] Mahmood, T.; Irtaza, A.; Mehmood, Z.; Tariq Mahmood, M.; Copy-move forgery detection through stationary wavelets and local binary pattern variance for forensic analysis in digital images; Forensic Sci. Int.: 2017; Volume 279 ,8-21.
[20] Fadl, S.M.; Semary, N.A.; Robust copy-move forgery revealing in digital images using polar coordinate system; Neurocomputing: 2017; Volume 265 ,57-65.
[21] Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Serra, G.; A SIFT-based forensic method for copy-move attack detection and transformation recovery; IEEE Trans. Inf. Forensics Secur.: 2011; Volume 6 ,1099-1110.
[22] Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Del Tongo, L.; Serra, G.; Copy-move forgery detection and localization by means of robust clustering with J-Linkage; Signal Process Image Commun.: 2013; Volume 28 ,659-669.
[23] Jin, G.N.; Wan, X.X.; An improved method for SIFT-based copy-move forgery detection using non-maximum value suppression and optimized J-Linkage; Signal Process Image Commun.: 2017; Volume 57 ,113-125.
[24] Shivakumar, B.L.; Santhosh Baboo, S.; Detection of region duplication forgery in digital images using SURF; Int. J. Comput. Sci. Issues: 2011; Volume 8 ,199-205.
[25] Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L.; Speeded-up robust features (SURF); Comput. Vis. Image Underst.: 2008; Volume 110 ,346-359.
[26] Jaberi, M.; Bebis, G.; Hussain, M.; Muhammad, G.; Accurate and robust localization of duplicated region in copy-move image forgery; Mach. Vis. Appl.: 2014; Volume 25 ,451-475.
[27] Yu, L.Y.; Han, Q.; Niu, X.M.; Feature point-based copy-move forgery detection: Covering the non-textured areas; Multimedia Tools Appl.: 2016; Volume 75 ,1159-1176.
[28] Uliyan, D.M.; Jalab, H.A.; Wahab, A.W.A.; Sadeghi, S.; Image region duplication forgery detection based on angular radial partitioning and Harris key-points; Symmetry: 2016; Volume 8 .
[29] Ulutas, G.; Muzaffer, G.; A new copy move forgery detection method resistant to object removal with uniform background forgery; Math. Probl. Eng.: 2016; Volume 2016 ,3215162.
[30] Alcantarilla, P.F.; Nuevo, J.; Bartoli, A.; Fast explicit diffusion for accelerated features in nonlinear scale spaces; Proceedings of the 24th British Machine Vision Conference: ; ,1-11.
[31] Yang, F.; Li, J.W.; Lu, W.; Weng, J.; Copy-move forgery detection based on hybrid features; Eng. Appl. Artif. Intell.: 2017; Volume 59 ,73-83.
[32] Alcantarilla, P.F.; Bartoli, A.; Davison, A.J.; KAZE features; Proceedings of the 12th European Conference on Computer Vision: ; ,214-227.
[33] Zandi, M.; Mahmoudi-Aznaveh, A.; Talebpour, A.; Iterative copy-move forgery detection based on a new interest point detector; IEEE Trans. Inf. Forensics Secur.: 2016; Volume 11 ,2499-2512.
[34] Yang, B.; Sun, X.; Guo, H.; Xia, Z.; Chen, X.; A copy-move forgery detection method based on CMFD-SIFT; Multimedia Tools Appl.: 2018; Volume 77 ,837-855.
[35] Li, J.; Yang, F.; Lu, W.; Sun, W.; Keypoint-based copy-move detection scheme by adopting MSCRs and improved feature matching; Multimedia Tools Appl.: 2017; Volume 76 ,20483-20497.
[36] Zhao, R.; Yan, R.Q.; Chen, Z.H.; Mao, K.Z.; Wang, P.; Gao, R.X.; Deep learning and its applications to machine health monitoring; Mech. Syst. Signal Process.: 2019; Volume 115 ,213-237.
[37] Bakator, M.; Radosav, D.; Deep learning and medical diagnosis: A review of literature; Multimodal Technol. Interact.: 2018; Volume 2 .
[38] Ammour, N.; Alhichri, H.; Bazi, Y.; Benjdira, B.; Alajlan, N.; Zuair, M.; Deep learning approach for car detection in UAV imagery; Remote Sens.: 2017; Volume 9 .
[39] Li, S.X.; Zhang, Z.L.; Li, B.; Li, C.W.; Multiscale rotated bounding Box-based deep learning method for detecting ship targets in remote sensing images; Sensors: 2018; Volume 18 .
[40] Rao, Y.; Ni, J.Q.; A deep learning approach to detection of splicing and copy-move forgeries in images; Proceedings of the 8th IEEE International Workshop on Information Forensics and Security: ; .
[41] Grewenig, S.; Weickert, J.; Bruhn, A.; From box filtering to fast explicit diffusion; Lect. Notes Comput. Sci.: 2010; Volume 6376 ,533-542.
[42] Qu, Z.; Bu, W.; Liu, L.; The algorithm of seamless image mosaic based on A-KAZE features extraction and reducing the inclination of image; IEEJ Trans. Electr. Electron. Eng.: 2018; Volume 13 ,134-146.
[43] Yang, X.; Cheng, K.T.; LDB: An ultra-fast feature for scalable augmented reality on mobile devices; Proceedings of the 11th IEEE and ACM International Symposium on Mixed and Augmented Reality: ; ,49-57.
[44] Wang, X.Y.; Li, S.; Liu, Y.N.; Niu, Y.; Yang, H.Y.; Zhou, Z.L.; A new keypoint-based copy-move forgery detection for small smooth regions; Multimedia Tools Appl.: 2017; Volume 76 ,23353-23382.
[45] Christlein, V.; Riess, C.; Jordan, J.; Riess, C.; Angelopoulou, E.; An evaluation of popular copy-move forgery detection approaches; IEEE Trans. Inf. Forensics Secur.: 2012; Volume 7 ,1841-1854.
[46] Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P.; BRIEF: Binary robust independent elementary features; Proceedings of the 11th European Conference on Computer Vision: ; ,778-792.
[47] Leutenegger, S.; Chli, M.; Siegwart, R.Y.; BRISK: Binary robust invariant scalable keypoints; Proceedings of the IEEE International Conference on Computer Vision: ; ,2548-2555.
[48] Dickscheid, T.; Förstner, W.; A trainable markov random field for low-level image feature matching with spatial relationships; Photogramm. Fernerkund. Geoinf.: 2013; Volume 4 ,269-283.
[49] Abduljabbar, Z.A.; Jin, H.; Ibrahim, A.; Hussien, Z.A.; Hussain, M.A.; Abbdal, S.H.; Zou, D.Q.; SEPIM: Secure and efficient private image matching; Appl. Sci.: 2016; Volume 6 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.