×

Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. (English) Zbl 1465.35081

Summary: The ubiquity of semilinear parabolic equations is clear from their numerous applications ranging from physics and biology to materials and social sciences. In this paper, we consider a practically desirable property for a class of semilinear parabolic equations of the abstract form \(u_t={\mathcal{L}} u+f[u]\), with \({\mathcal{L}}\) a linear dissipative operator and \(f\) a nonlinear operator in space, namely, a time-invariant maximum bound principle, in the sense that the time-dependent solution \(u\) preserves for all time a uniform pointwise bound in absolute value imposed by its initial and boundary conditions. We first study an analytical framework for sufficient conditions on \({\mathcal{L}}\) and \(f\) that lead to such a maximum bound principle for the time-continuous dynamic system of infinite or finite dimensions. Then we utilize a suitable exponential time-differencing approach with a properly chosen generator of the contraction semigroup to develop first- and second-order accurate temporal discretization schemes that satisfy the maximum bound principle unconditionally in the time-discrete setting. Error estimates of the proposed schemes are derived along with their energy stability. Extensions to vector- and matrix-valued systems are also discussed. We demonstrate that the abstract framework and analysis techniques developed here offer an effective and unified approach to studying the maximum bound principle of the abstract evolution equation that covers a wide variety of well-known models and their numerical discretization schemes. Some numerical experiments are also carried out to verify the theoretical results.

MSC:

35B50 Maximum principles in context of PDEs
35K58 Semilinear parabolic equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65R20 Numerical methods for integral equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085-1095.
[2] H. Amann, Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J. Math. Anal. Appl., 65 (1978), pp. 432-467. · Zbl 0387.35038
[3] S. Badia and A. Hierro, On discrete maximum principles for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 286 (2015), pp. 107-122. · Zbl 1423.76205
[4] G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147 (1998), pp. 362-387. · Zbl 0924.65089
[5] J. H. Bramble and B. E. Hubbard, New monotone type approximations for elliptic problems, Math. Comp., 18 (1964), pp. 349-367. · Zbl 0124.33006
[6] J. H. Brandts, S. Korotov, and M. Křížek, The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem, Linear Algebra Appl., 429 (2008), pp. 2344-2357. · Zbl 1154.65086
[7] E. Burman and A. Ern, Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, C. R. Math. Acad. Sci. Paris Ser. I, 338 (2004), pp. 641-646. · Zbl 1049.65128
[8] E. Chasseigne, The Dirichlet problem for some nonlocal diffusion equations, Differential Integral Equations, 20 (2007), pp. 1389-1404. · Zbl 1211.47088
[9] P. G. Ciarlet, Discrete maximum principle for finite-difference operators, Aequationes Math., 4 (1970), pp. 338-352. · Zbl 0198.14601
[10] P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp. 17-31. · Zbl 0251.65069
[11] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002), pp. 430-455. · Zbl 1005.65069
[12] Q. Du, Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity, Appl. Anal., 53 (1994), pp. 1-17. · Zbl 0843.35019
[13] Q. Du, Discrete gauge invariant approximations of a time-dependent Ginzburg-Landau model of superconductivity, Math. Comp., 67 (1998), pp. 965-986. · Zbl 0907.65086
[14] Q. Du, Numerical approximations of the Ginzburg-Landau models for superconductivity, J. Math. Phys., 46 (2005), art. 095109. · Zbl 1111.82067
[15] Q. Du, Nonlocal Modeling, Analysis, and Computation, CBMS-NSF Regional Conf. Ser. in Appl. Math. 94, SIAM, Philadelphia, 2019, https://doi.org/10.1137/1.9781611975628. · Zbl 1423.00007
[16] Q. Du and X. B. Feng, The phase field method for geometric moving interfaces and their numerical approximations, in Geometric Partial Differential Equations, Part I, Handb. Numer. Anal. 21, Elsevier, 2020, pp. 425-508. · Zbl 1455.35276
[17] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), pp. 667-696, https://doi.org/10.1137/110833294. · Zbl 1422.76168
[18] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), pp. 493-540. · Zbl 1266.26020
[19] Q. Du, M. D. Gunzburger, and J. S. Peterson, Analysis and approximation of the Ginzburg-Landau model for superconductivity, SIAM Rev., 34 (1992), pp. 54-81, https://doi.org/10.1137/1034003. · Zbl 0787.65091
[20] Q. Du, L. Ju, X. Li, and Z. H. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal., 57 (2019), pp. 875-898, https://doi.org/10.1137/18M118236X. · Zbl 1419.65018
[21] Q. Du, R. A. Nicolaides, and X. Wu, Analysis and convergence of a covolume approximation of the Ginzburg-Landau model of superconductivity, SIAM J. Numer. Anal., 35 (1998), pp. 1049-1072, https://doi.org/10.1137/S0036142996302852. · Zbl 0911.65139
[22] Q. Du, Y. Z. Tao, X. C. Tian, and J. Yang, Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green’s functions, IMA J. Numer. Anal., 39 (2019), pp. 607-625. · Zbl 1466.65222
[23] Q. Du and X. B. Yin, A conforming DG method for linear nonlocal models with integrable kernels, J. Sci. Comput., 80 (2019), pp. 1913-1935. · Zbl 1428.82037
[24] Q. Du and W.-X. Zhu, Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT, 45 (2005), pp. 307-328. · Zbl 1080.65074
[25] S. W. Duo, H. W. van Wyk, and Y. Z. Zhang, A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., 355 (2018), pp. 233-252. · Zbl 1380.65323
[26] S. W. Duo and Y. Z. Zhang, Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications, Comput. Methods Appl. Mech. Engrg., 355 (2019), pp. 639-662. · Zbl 1441.65085
[27] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer-Verlag, New York, 2000. · Zbl 0952.47036
[28] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 2000.
[29] L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45 (1992), pp. 1097-1123. · Zbl 0801.35045
[30] I. Faragó and R. Horváth, Discrete maximum principle and adequate discretizations of linear parabolic problems, SIAM J. Sci. Comput., 28 (2006), pp. 2313-2336, https://doi.org/10.1137/050627241. · Zbl 1130.65086
[31] I. Faragó, J. Karátson, and S. Korotov, Discrete maximum principles for nonlinear parabolic PDE systems, IMA J. Numer. Anal., 32 (2012), pp. 1541-1573. · Zbl 1258.65088
[32] I. Faragó, S. Korotov, and T. Szabó, On continuous and discrete maximum principles for elliptic problems with the third boundary condition, Appl. Math. Comput., 219 (2013), pp. 7215-7224. · Zbl 1288.65154
[33] I. Faragó, S. Korotov, and T. Szabó, On continuous and discrete maximum-minimum principles for reaction-diffusion problems with the Neumann boundary condition, in Applications of Mathematics 2015, Czech. Acad. Sci., Prague, 2015, pp. 34-44. · Zbl 1363.35061
[34] X. B. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94 (2003), pp. 33-65. · Zbl 1029.65093
[35] X. B. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math., 99 (2004), pp. 47-84. · Zbl 1071.65128
[36] X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 110 (2016), pp. 49-64. · Zbl 1334.35386
[37] M. Frittelli, A. Madzvamuse, I. Sgura, and C. Venkataraman, Preserving invariance properties of reaction-diffusion systems on stationary surfaces, IMA J. Numer. Anal., 39 (2019), pp. 235-270. · Zbl 1483.65155
[38] E. Gallopoulous and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Comput., 13 (1992), pp. 1236-1264, https://doi.org/10.1137/0913071. · Zbl 0757.65101
[39] S. Gaudreault and J. A. Pudykiewicz, An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere, J. Comput. Phys., 322 (2016), pp. 827-848. · Zbl 1351.76106
[40] S. Gaudreault, G. Rainwater, and M. Tokman, KIOPS: A fast adaptive Krylov subspace solver for exponential integrators, J. Comput. Phys., 372 (2018), pp. 236-255. · Zbl 1418.65074
[41] V. Ginzburg and L. Landau, On the theory of superconductivity, Zh. Eksperim. Teor. Fiz., 20 (1950), pp. 1064-1082.
[42] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89-112, https://doi.org/10.1137/S003614450036757X. · Zbl 0967.65098
[43] J.-L. Guermond, B. Popov, and L. Saavedra, Second-order invariant domain preserving ALE approximation of hyperbolic systems, J. Comput. Phys., 401 (2020), art. 108927. · Zbl 1453.65320
[44] J.-L. Guermond, B. Popov, and I. Tomas, Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems, Comput. Methods Appl. Mech. Engrg., 347 (2019), pp. 143-175. · Zbl 1440.65136
[45] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, 2008, https://doi.org/10.1137/1.9780898717778. · Zbl 1167.15001
[46] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911-1925, https://doi.org/10.1137/S0036142995280572. · Zbl 0888.65032
[47] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552-1574, https://doi.org/10.1137/S1064827595295337. · Zbl 0912.65058
[48] M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43 (2005), pp. 1069-1090, https://doi.org/10.1137/040611434. · Zbl 1093.65052
[49] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209-286. · Zbl 1242.65109
[50] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991. · Zbl 0729.15001
[51] T. L. Hou, T. Tang, and J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 72 (2017), pp. 1214-1231. · Zbl 1379.65063
[52] Y. H. Huang and A. Oberman, Numerical methods for the fractional Laplacian: A finite difference-quadrature approach, SIAM J. Numer. Anal., 52 (2014), pp. 3056-3084, https://doi.org/10.1137/140954040. · Zbl 1316.65071
[53] L. Isherwood, Z. J. Grant, and S. Gottlieb, Strong stability preserving integrating factor Runge-Kutta methods, SIAM J. Numer. Anal., 56 (2018), pp. 3276-3307, https://doi.org/10.1137/17M1143290. · Zbl 1404.65064
[54] Y. Jiang and H. L. Liu, Invariant-region-preserving DG methods for multi-dimensional hyperbolic conservation law systems, with an application to compressible Euler equations, J. Comput. Phys., 373 (2018), pp. 385-409. · Zbl 1416.65293
[55] L. Ju, X. Li, Z. H. Qiao, and H. Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comp., 87 (2018), pp. 1859-1885. · Zbl 1448.65182
[56] L. Ju, X. F. Liu, And W. Leng, Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), pp. 1667-1687. · Zbl 1304.65190
[57] L. Ju, J. Zhang, and Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Comput. Mater. Sci., 108 (2015), pp. 272-282.
[58] L. Ju, J. Zhang, L. Y. Zhu, and Q. Du, Fast explicit integration factor methods for semilinear parabolic equations, J. Sci. Comput., 62 (2015), pp. 431-455. · Zbl 1317.65172
[59] A. Karafiat, Discrete maximum principle in parabolic boundary-value problems, Ann. Polon. Math., 53 (1991), pp. 253-265. · Zbl 0726.65107
[60] J. Karàtson and S. Korotov, Some discrete maximum principles arising for nonlinear elliptic finite element problems, Comput. Math. Appl., 70 (2015), pp. 2732-2741. · Zbl 1443.65347
[61] J. Karàtson, S. Korotov, and M. Křížek, On discrete maximum principles for nonlinear elliptic problems, Math. Comput. Simulation, 76 (2007), pp. 99-108. · Zbl 1142.65093
[62] D. R. Kassoy and J. Poland, The thermal explosion confined by a constant temperature boundary: I-the induction period solution, SIAM J. Appl. Math., 39 (1980), pp. 412-430, https://doi.org/10.1137/0139035. · Zbl 0472.76070
[63] H. J. Kuiper, Invariant sets for nonlinear elliptic and parabolic systems, SIAM J. Math. Anal., 11 (1980), pp. 1075-1103, https://doi.org/10.1137/0511095. · Zbl 0468.35055
[64] J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4 (1967), pp. 372-380, https://doi.org/10.1137/0704033. · Zbl 0223.65030
[65] D. Li, Z. H. Qiao, and T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations, SIAM J. Numer. Anal., 54 (2016), pp. 1653-1681, https://doi.org/10.1137/140993193. · Zbl 1346.35162
[66] R. H. Li, Z. Y. Chen, and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker, 2000. · Zbl 0940.65125
[67] Z. L. Li and K. Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput., 23 (2001), pp. 339-361, https://doi.org/10.1137/S1064827500370160. · Zbl 1001.65115
[68] X. F. Liu and Q. Nie, Compact integration factor methods for complex domains and adaptive mesh refinement, J. Comput. Phys., 229 (2010), pp. 5692-5706. · Zbl 1194.65111
[69] H. L. Liu and H. Yu, Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker-Planck equations, SIAM J. Sci. Comput., 36 (2014), pp. A2296-A2325, https://doi.org/10.1137/130935161. · Zbl 1341.65038
[70] D. Lu and Y. T. Zhang, Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection-diffusion problems, J. Sci. Comput., 73 (2017), pp. 980-1027. · Zbl 1381.65067
[71] E. C. MacRae, Matrix derivatives with an application to an adaptive linear decision problem, Ann. Statist., 2 (1974), pp. 337-346. · Zbl 0285.26013
[72] C. Mastroserio and M. Montrone, Invariant regions and asymptotic behaviour for the numerical solution of reaction-diffusion systems by a class of alternating direction methods, Calcolo, 21 (1984), pp. 269-279. · Zbl 0574.65111
[73] M. E. Mincsovics and T. L. Horváth, On the differences of the discrete weak and strong maximum principles for elliptic operators, in Large-Scale Scientific Computing, Lecture Notes in Comput. Sci. 7116, Springer, Heidelberg, 2012, pp. 614-621. · Zbl 1354.65248
[74] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20 (1978), pp. 801-836, https://doi.org/10.1137/1020098. · Zbl 0395.65012
[75] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3-49, https://doi.org/10.1137/S00361445024180. · Zbl 1030.65029
[76] Q. Nie, F. Y. M. Wan, Y. T. Zhang, and X. F. Liu, Compact integration factor methods in high spatial dimensions, J. Comput. Phys., 227 (2008), pp. 5238-5255. · Zbl 1142.65072
[77] J. Niesen and W. M. Wright, Algorithm 919: A Krylov subspace algorithm for evaluating the \(\phi \)-functions appearing in exponential integrators, ACM Trans. Math. Soft., 38 (2008), art. 22. · Zbl 1365.65185
[78] R. H. Nochetto and W. J. Zhang, Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence form, Found. Comput. Math., 18 (2018), pp. 537-593. · Zbl 1397.65286
[79] B. Osting and D. Wang, A diffusion generated method for orthogonal matrix-valued fields, Math. Comp., 89 (2020), pp. 515-550. · Zbl 1435.65144
[80] E.-M. Ouhabaz, \(L^\infty \)-contractivity of semigroups generated by sectorial forms, J. London Math. Soc., 46 (1992), pp. 529-542. · Zbl 0788.47034
[81] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. · Zbl 0777.35001
[82] D.-Y. Peng and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundamen., 15 (1976), pp. 59-64.
[83] H. S. Price, Monotone and oscillation matrices applied to finite difference approximations, Math. Comp., 22 (1968), pp. 489-516. · Zbl 0162.47204
[84] Z. H. Qiao and S. Y. Sun, Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state, SIAM J. Sci. Comput., 36 (2014), pp. B708-B728, https://doi.org/10.1137/130933745. · Zbl 1305.76117
[85] R. Redheffer and W. Walter, Invariant sets for systems of partial differential equations. I. Parabolic equations, Arch. Rational Mech. Anal., 67 (1978), pp. 41-52. · Zbl 0377.35038
[86] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976. · Zbl 0346.26002
[87] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993. · Zbl 0818.26003
[88] J. Shen, T. Tang, and J. Yang, On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14 (2016), pp. 1517-1534. · Zbl 1361.65059
[89] J. Shen and X. F. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), pp. 1669-1691. · Zbl 1201.65184
[90] R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw., 24 (1998), pp. 130-156. · Zbl 0917.65063
[91] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed., Grundlehren Math. Wiss. 258, Springer-Verlag, New York, 1994. · Zbl 0807.35002
[92] P. Stehlík and J. Volek, Maximum principles for discrete and semidiscrete reaction-diffusion equation, Discrete Dyn. Nat. Soc., 2015 (2015), art. 791304. · Zbl 1418.35238
[93] T. Tang and J. Yang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 34 (2016), pp. 471-481. · Zbl 1374.65154
[94] H. Tian, L. Ju, and Q. Du, Nonlocal convection-diffusion problems and finite element approximations, Comput. Methods Appl. Mech. Engrg., 289 (2015), pp. 60-78. · Zbl 1423.74925
[95] X. C. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51 (2013), pp. 3458-3482, https://doi.org/10.1137/13091631X. · Zbl 1295.82021
[96] X. C. Tian, Q. Du, and M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains, Adv. Comput. Math., 42 (2016), pp. 1363-1380. · Zbl 1356.65239
[97] R. S. Varga, On a discrete maximum principle, SIAM J. Numer. Anal., 3 (1966), pp. 355-359, https://doi.org/10.1137/0703029. · Zbl 0143.17603
[98] X. Q. Wang, L. Ju, and Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys., 316 (2016), pp. 21-38. · Zbl 1349.92015
[99] S. M. Wise, C. Wang, and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), pp. 2269-2288, https://doi.org/10.1137/080738143. · Zbl 1201.35027
[100] J. Yang, Q. Du, and W. Zhang, Uniform \(L^p\)-bound of the Allen-Cahn equation and its numerical discretization, Int. J. Numer. Anal. Model., 15 (2018), pp. 213-227. · Zbl 1408.65076
[101] P. Yang, T. Xiong, J. M. Qiu, and Z. F. Xu, High order maximum principle preserving finite volume method for convection dominated problems, J. Sci. Comput., 67 (2016), pp. 795-820. · Zbl 1350.65095
[102] E. G. Yanik, A discrete maximum principle for collocation methods, Comput. Math. Appl., 14 (1987), pp. 459-464. · Zbl 0634.65065
[103] E. G. Yanik, Sufficient conditions for a discrete maximum principle for high order collocation methods, Comput. Math. Appl., 17 (1989), pp. 1431-1434. · Zbl 0686.65052
[104] G. W. Yuan and Y. L. Yu, Existence of solution of a finite volume scheme preserving maximum principle for diffusion equations, Numer. Methods Partial Differential Equations, 34 (2018), pp. 80-96. · Zbl 1384.65078
[105] J. Zhang, C. B. Zhou, Y. G. Wang, L. Ju, Q. Du, X. B. Chi, D. S. Xu, D. X. Chen, Y. Liu, and Z. Liu, Extreme-scale phase field simulations of coarsening dynamics on the Sunway Taihulight supercomputer, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’16), 2016, art. 4.
[106] S. Zhao, J. Ovadia, X. F. Liu, Y. T. Zhang, and Q, Nie, Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems, J. Comput. Phys., 230 (2011), pp. 5996-6009. · Zbl 1220.65120
[107] L. Y. Zhu, L. Ju, and W. D. Zhao, Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations, J. Sci. Comput., 67 (2016), pp. 1043-1065. · Zbl 1342.65187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.