×

Cost of auditory sharpness: model-based estimate of energy use by auditory brainstem “octopus” neurons. (English) Zbl 1411.92055

Summary: Octopus cells (OCs) of the mammalian auditory brainstem precisely encode timing of fast transient sounds and tone onsets. Sharp temporal fidelity of OCs relies on low resting membrane resistance, which suggests high energy expenditure on maintaining ion gradients across plasma membrane. We provide a model-based estimate of energy consumption in resting and spiking OCs. Our results predict that a resting OC consumes up to \(2.6\times 10^{9}\) ATP molecules (ATPs) per second which remarkably exceeds energy consumption of other CNS neurons. Glucose usage by all OCs in the rat is nevertheless low due to their low number. Major part of the OCs energy use results from the ion mechanisms providing for the low membrane resistance: hyperpolarization-activated mixed cation conductance and low-voltage activated K\(^+\)-conductance. Spatially ordered synapses – a feature of the OCs allowing them to compensate for asynchrony of the synaptic input – brings only a 12% energy saving to OCs excitability cost. Only 13% of total OC energy used for an AP generation (\(1.5\times 10^{7}\) ATPs) is associated with the AP generation in the axon initial segment, 64% – with synaptic currents processing and 23% – with keeping resting potential.

MSC:

92C20 Neural biology

Software:

NEURON; IPython
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, J., Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human, Aud. Neurosci., 3, 4, 335-350 (1997)
[2] Attwell, D.; Laughlin, S., An energy budget for signaling in the grey matter of the brain, J. Cereb. Blood Flow Metab., 21, 1133-1145 (2001)
[3] Bal, R.; Oertel, D., Hyperpolarization-activated, mixed-cation current (IH) in octopus cells of the mammalian cochlear nucleus, J. Neurophysiol., 84, 2, 806-817 (2000)
[4] Bal, R.; Oertel, D., Potassium currents in octopus cells of the mammalian cochlear nucleus, J. Neurophysiol., 86, 5, 2299-2311 (2001)
[5] Braitenberg, V.; Schüz, A., Cortex: Statistics and Geometry of Neuronal Connectivity (1998), Springer Science & Business Media
[6] Cai, Y.; McGee, J.; Walsh, E. J., Contributions of ion conductances to the onset responses of octopus cells in the ventral cochlear nucleus: simulation results, J. Neurophysiol., 83, 1, 301-314 (2000)
[7] Cai, Y.; Walsh, E. J.; McGee, J., Mechanisms of onset responses in octopus cells of the cochlear nucleus: implications of a model, J. Neurophysiol., 78, 2, 872-883 (1997)
[8] Cao, X.-J.; Oertel, D., Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity, J. Neurophysiol., 104, 5, 2308-2320 (2010)
[9] Carnevale, N.; Hines, M., The Neuron Book (2006), Cambridge University Press: Cambridge University Press Cambridge, UK
[10] Carter, B. C.; Bean, B. P., Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-Spiking neurons, Neuron, 64, 6, 898-909 (2009)
[11] Crotty, P.; Sangrey, T.; Levy, W. B., Metabolic energy cost of action potential velocity, J. Neurophysiol., 96, 3, 1237-1246 (2006)
[12] Dallos, P., The active cochlea, J. Neurosci., 12, 12, 4575-4585 (1992)
[13] de A. Nogueira, R.; Garcia, E. C., A theoretical study on heat production in squid giant axon, J. Theor. Biol., 104, 1, 43-52 (1983)
[14] Erecińska, M.; Silver, I. A., Atp and brain function, J. Cerebral Blood Flow Metabol., 9, 1, 2-19 (1989)
[15] Felix, I.; Richard, A.; Gourévitch, B.; Gómez-Álvarez, M.; Leijon, S.; Saldaña, E.; Magnusson, A. K., Octopus cells in the posteroventral cochlear nucleus provide the main excitatory input to the superior paraolivary nucleus, Front Neural Circuits, 11, 37 (2017)
[16] Gardner, S. M.; Trussell, L. O.; Oertel, D., Time course and permeation of synaptic ampa receptors in cochlear nuclear neurons correlate with input, J. Neurosci., 19, 20, 8721-8729 (1999)
[17] Golding, N.; Ferragamo, M.; Oertel, D., Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus, J. Neurosci., 19, 8, 2897-2905 (1999)
[18] Golding, N.; Oertel, D., Synaptic integration in dendrites: exceptional need for speed, J. Physiol., 590, 22, 5563-5569 (2012)
[19] Golding, N.; Robertson, D.; Oertel, D., Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision, J. Neurosci., 15, 4, 3138-3153 (1995)
[20] Harris, J.; Jolivet, R.; Attwell, D., Synaptic energy use and supply, Neuron, 75, 762-777 (2012)
[21] Harvey, R.; Napper, R., Quantitative study of granule and purkinje cells in the cerebellar cortex of the rat, J. Comparat. Neurol., 274, 2, 151-157 (1988)
[22] Hasenstaub, A.; Otte, S.; Callaway, E.; Sejnowski, T., Metabolic cost as a unifying principle governing neuronal biophysics, Proc. Natl. Acad. Sci. U. S. A., 107, 12329-12334 (2010)
[23] Howarth, C.; Glesson, P.; Attwell, D., Updated energy bidgets for neural computation in the neocortex and cerebellum, J. Cereb. Blood Flow Metab., 32, 1222-1232 (2012)
[24] Howarth, J. V.; Keynes, R. D.; Ritchie, J. M., The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres, J. Physiol. (Lond.), 194, 3, 745-793 (1968)
[25] Hu, H.; Roth, F. C.; Vandael, D.; Jonas, P., Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in gabaergic interneuron axons, Neuron, 98, 1, 156-165 (2018)
[26] Hudspeth, A. J., The Inner Ear, (Kandel, E. R.; Schwartz, J. H.; Jessell, T. H.; Siegelbaum, S. A.; Hudspeth, A. J., Principles of Neural Science, Chap. 30 (2013), McGraw-Hill, Health Professions Division), 654-681
[27] Idrizbegovic, E.; Canlon, B.; Bross, L.; Willott, J.; Bogdanovic, N., The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of cba/caj mice: a quantitative study, Hear. Res., 158, 1-2, 102-115 (2001)
[28] Iotti, S.; Frassineti, C.; Sabatini, A.; Vacca, A.; Barbiroli, B., Quantitative mathematical expressions for accurate in vivo assessment of cytosolic [adp] and \(δ\) g of atp hydrolysis in the human brain and skeletal muscle, Bioch. et Biophys. Acta (BBA)-Bioenerget., 1708, 2, 164-177 (2005)
[29] Jansen, M. A.; Shen, H.; Zhang, L.; Wolkowicz, P. E.; Balschi, J. A., Energy requirements for the na+ gradient in the oxygenated isolated heart: effect of changing the free energy of atp hydrolysis, Am. J. Physiol. Heart Circulatory Physiol., 285, 6, H2437-H2445 (2003)
[30] Ju, H.; Hines, M. L.; Yu, Y., Cable energy function of cortical axons, Sci. Rep., 6, 29686 (2016)
[31] Kann, O., The interneuron energy hypothesis: implications for brain disease, Neurobiol. Dis., 90, 75-85 (2016)
[32] Kann, O.; Papageorgiou, I.; Draguhn, A., Highly energized inhibitory interneurons are a central element for information processing in cortical networks, J. Cereb. Blood Flow Metab., 34, 1270-1282 (2014)
[33] Kedem, O.; Katchalsky, A., Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27, 229-246 (1958)
[34] Lennie, P., The cost of cortical computation, Curr. Biol., 13, 6, 493-497 (2003)
[35] Levy, W.; Baxter, R., Energy efficient neural codes, Neural Comput., 8, 531-543 (1996)
[36] Levy, W. B.; Baxter, R.a., Energy-efficient neuronal computation via quantal synaptic failures, J. Neurosci., 22, 11, 4746-4755 (2002)
[37] Margineanu, D. G.; Schoffeniels, E., Molecular events and energy changes during the action potential, Proc. Natl. Acad. Sci., 74, 9, 3810-3813 (1977)
[38] Markram, H., The blue brain project, Nat. Rev. Neurosci., 7, 2, 153 (2006)
[39] McGinley, M., Rapid Integration across Tonotopy by Individual Auditory Brainstem Octopus Cells, The Computing Dendrite, 223-243 (2014), Springer
[40] McGinley, M.; Liberman, M.; Bal, R.; Oertel, D., Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons, J. Neurosci., 32, 27, 9301-9311 (2012)
[41] Moujahid, A.; d’Anjou, A.; Graña, M., Energy demands of diverse spiking cells from the neocortex, hippocampus, and thalamus, Front. Comput. Neurosci., 8 (2014)
[42] Moujahid, A.; D’Anjou, A.; Torrealdea, F. J.; Torrealdea, F., Energy and information in hodgkin-Huxley neurons, Phys. Rev. E Stat. Nonlinear, Soft Matter Phys., 83, 3, 1-11 (2011)
[43] Muniak, M. A.; Rivas, A.; Montey, K. L.; May, B. J.; Francis, H. W.; Ryugo, D. K., 3D model of frequency representation in the cochlear nucleus of the cba/j mouse, J. Comparat. Neurol., 521, 7, 1510-1532 (2013)
[44] Niven, J.; Laughlin, S., Energy limitation as a selective pressure on the evolution of sensory systems, J. Exp. Biol., 211, 11, 1792-1804 (2008)
[45] Niven, J. E., Neuronal energy consumption: biophysics, efficiency and evolution, Curr. Opin. Neurobiol., 41, 129-135 (2016)
[46] Oertel, D.; Bal, R.; Gardner, S.; Smith, P.; Joris, P., Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus, Proc. Natl. Acad. Sci. U. S. A., 97, 22, 11773-11779 (2000)
[47] Oertel, D.; Cao, X.-J.; Ison, J. R.; Allen, P. D., Cellular computations underlying detection of gaps in sounds and lateralizing sound sources, Trends Neurosci., 40, 10, 613-624 (2017)
[48] Okaty, B. W.; Miller, M. N.; Sugino, K.; Hempel, C. M.; Nelson, S. B., Transcriptional and electrophysiological maturation of neocortical fast-spiking gabaergic interneurons, J. Neurosci., 29, 21, 7040-7052 (2009)
[49] Osen, K. K., Cytoarchitecture of the cochlear nuclei in the cat, J. Comp. Neurol., 136, 4, 453-483 (1969)
[50] Osorio, N.; Cathala, L.; Meisler, M. H.; Crest, M.; Magistretti, J.; Delmas, P., Persistent Nav1. 6 current at axon initial segments tunes spike timing of cerebellar granule cells, J. Physiol. (Lond.), 588, 4, 651-670 (2010)
[51] Pérez, F.; Granger, B. E., IPYthon: a system for interactive scientific computing, Comput. Sci. Eng., 9, 3, 21-29 (2007)
[52] Rhode, W.; Smith, P., Encoding timing and intensity in the ventral cochlear nucleus of the cat, J. Neurophysiol., 56, 2, 261-286 (1986)
[53] Richie, J., Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism, Prog. Biophys. Mol. Biol., 26, 147-187 (1973)
[54] Rolfe, D. F.; Brown, G. C., Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol. Rev., 77, 3 (1997)
[55] Roth, K.; Weiner, M., Determination of cytosolic adp and amp concentrations and the free energy of atp hydrolysis in human muscle and brain tissues with 31p nmr spectroscopy, Mag. Reson Med., 22, 2, 505-511 (1991)
[56] Rothman, J.; Manis, P., The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons, J. Neurophysiol., 89, 6, 3097-3113 (2003)
[57] Rothman, J. S.; Manis, P. B.; No, L. D.; No, L. D., Differential expression of three distinct potassium currents in the ventral cochlear nucleus, J. Neurophysiol., 2, 6, 3070-3082 (2003)
[58] Rothman, J. S.; Young, E. D.; Manis, P. B., Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model, J. Neurophysiol., 70, 6, 2562-2583 (1993)
[59] Sengupta, B.; Laughlin, S.; Niven, J., Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency, PLoS Comput. Biol., 9, e1003263 (2013)
[60] Sengupta, B.; Laughlin, S.; Niven, J., Consequences of converting graded to action potentials upon neural information coding and energy efficiency, PLoS Comput. Biol., 10, e1003439 (2014)
[61] Sengupta, B.; Stemmler, M.; Laughlin, S.; Niven, J., Action potential energy efficiency varies among neuron types in vertebrates and invertebrates, PLoS Comput. Biol., 6, e1000840 (2010)
[62] Smith, P. H.; Massie, A.; Joris, P. X., Acoustic stria: anatomy of physiologically characterized cells and their axonal projection patterns, J. Comparat. Neurol., 482, 4, 349-371 (2005)
[63] Sokoloff, L.; Reivich, M.; Kennedy, C.; Des Rosiers, M.; Patlak, C.; Pettigrew, K.; Sakurada, O.; Shinohara, M., The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem., 28, 897-916 (1977)
[64] Spencer, M.; Grayden, D.; Bruce, I.; Meffin, H.; Burkitt, A., An investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus, Front. Comput. Neurosci., 6 (2012)
[65] Spencer, M. J.; Nayagam, D. A.; Clarey, J. C.; Paolini, A. G.; Meffin, H.; Burkitt, A. N.; Grayden, D. B., Broadband onset inhibition can suppress spectral splatter in the auditory brainstem, PLoS ONE, 10, 5, 1-23 (2015)
[66] Stein, W., Energetics and the design principles of the na/k-atpase, J. Theor. Biol., 147, 2, 145-159 (1990)
[67] Tasaki, I.; Kusano, K.; Byrne, P., Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse, Biophys. J., 55, 6, 1033-1040 (1989)
[68] Trune, D. R., Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: i. number, size, and density of its neurons, J. Comparat. Neurol., 209, 4, 409-424 (1982)
[69] Wen, Q.; Chklovskii, D. B., A cost-benefit analysis of neuronal morphology, J. Neurophysiol., 99, 5, 2320-2328 (2008)
[70] Willott, J.; Bross, L., Morphology of the octopus cell area of the cochlear nucleus in young and aging C57BL/6J and CBA/j mice, J. Comp. Neurol., 300, 61-81 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.