×

Adapting a plant tissue model to animal development: introducing cell sliding into VirtualLeaf. (English) Zbl 1422.92021

Summary: Cell-based, mathematical modeling of collective cell behavior has become a prominent tool in developmental biology. Cell-based models represent individual cells as single particles or as sets of interconnected particles and predict the collective cell behavior that follows from a set of interaction rules. In particular, vertex-based models are a popular tool for studying the mechanics of confluent, epithelial cell layers. They represent the junctions between three (or sometimes more) cells in confluent tissues as point particles, connected using structural elements that represent the cell boundaries. A disadvantage of these models is that cell-cell interfaces are represented as straight lines. This is a suitable simplification for epithelial tissues, where the interfaces are typically under tension, but this simplification may not be appropriate for mesenchymal tissues or tissues that are under compression, such that the cell-cell boundaries can buckle. In this paper, we introduce a variant of VMs in which this and two other limitations of VMs have been resolved. The new model can also be seen as on off-the-lattice generalization of the cellular Potts model. It is an extension of the open-source package VirtualLeaf, which was initially developed to simulate plant tissue morphogenesis where cells do not move relative to one another. The present extension of VirtualLeaf introduces a new rule for cell-cell shear or sliding, from which cell rearrangement (T1) and cell extrusion (T2) transitions emerge naturally, allowing the application of VirtualLeaf to problems of animal development. We show that the updated VirtualLeaf yields different results than the traditional vertex-based models for differential adhesion-driven cell sorting and for the neighborhood topology of soft cellular networks.

MSC:

92C15 Developmental biology, pattern formation
92C80 Plant biology
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson ARA, Chaplain MAJ, Rejniak KA (2007) Single-cell-based models in biology and medicine. In: Mathematics and biosciences in interaction. Birkhaüser, Berlin · Zbl 1228.92018
[2] Antonelli PL, Rogers TD, Willard MA (1973) Geometry and the exchange principle in cell aggregation kinetics. J Theor Biol 41(1):1-21. https://doi.org/10.1016/0022-5193(73)90186-0 · doi:10.1016/0022-5193(73)90186-0
[3] Atia L, Bi D, Sharma Y, Mitchel JA, Gweon B, Koehler SA, DeCamp SJ, Lan B, Kim JH, Hirsch R, Pegoraro AF, Lee KH, Starr JR, Weitz DA, Martin AC, Park JA, Butler JP, Fredberg JJ (2018) Geometric constraints during epithelial jamming. Nat Phys 14:613-620. https://doi.org/10.1038/s41567-018-0089-9 · doi:10.1038/s41567-018-0089-9
[4] Balter, A.; Merks, RMH; Popławski, NJ; Swat, M.; Glazier, JA; Anderson, ARA (ed.); Rejniak, KA (ed.), The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study, 151-167 (2007), Basel
[5] Barton DL, Henkes S, Weijer CJ, Sknepnek R (2017) Active vertex model for cell-resolution description of epithelial tissue mechanics. PLoS Comput Biol 13(6):e1005569. https://doi.org/10.1371/journal.pcbi.1005569 · doi:10.1371/journal.pcbi.1005569
[6] Belmonte JM, Clendenon SG, Oliveira GM, Swat MH, Greene EV, Jeyaraman S, Glazier JA, Bacallao RL (2016) Virtual-tissue computer simulations define the roles of cell adhesion and proliferation in the onset of kidney cystic disease. Mol Biol Cell 27(22):3673-3685. https://doi.org/10.1091/mbc.E16-01-0059 · doi:10.1091/mbc.E16-01-0059
[7] Bi D, Lopez JH, Schwarz JM, Manning ML (2015) A density-independent rigidity transition inbiological tissues. Nat Phys 11(12):1074-1079. https://doi.org/10.1080/10586458.1992.10504253 · Zbl 0769.49033 · doi:10.1080/10586458.1992.10504253
[8] Bi D, Yang X, Marchetti MC, Manning ML (2016) Motility-Driven glass and jamming transitions in biological tissues. Phys Rev X. https://doi.org/10.1103/PhysRevX.6.021011 · doi:10.1103/PhysRevX.6.021011
[9] Boas SEM, Merks RMH (2014) Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J R Soc Interface 11(92):20131049-20131049. https://doi.org/10.1038/ncb1705 · doi:10.1038/ncb1705
[10] Boas SEM, Navarro JMI, Merks RMH, Blom JG (2015) A global sensitivity analysis approach for morphogenesis models. BMC Syst Biol 9(1):85. https://doi.org/10.1186/s12918-015-0222-7 · doi:10.1186/s12918-015-0222-7
[11] Brodland GW (2002) The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J Biomech Eng Trans ASME 124(2):188. https://doi.org/10.1103/PhysRevLett.76.3032 · doi:10.1103/PhysRevLett.76.3032
[12] Brodland GW, Veldhuis JH, Kim S, Perrone M, Mashburn D, Hutson MS (2014) CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. PLoS One 9(6):e99116. https://doi.org/10.1371/journal.pone.0099116 · doi:10.1371/journal.pone.0099116
[13] Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456(7224):957-961. https://doi.org/10.1038/nature07441 · doi:10.1038/nature07441
[14] Carter R, Sánchez-Corrales YE, Hartley M, Grieneisen VA, Marée AFM (2017) Pavement cells and the topology puzzle. Development (Cambridge, England) 144(23):4386-4397. https://doi.org/10.1242/dev.157073 · doi:10.1242/dev.157073
[15] De Vos D, Dzhurakhalov A, Stijven S, Klosiewicz P, Beemster GTS, Broeckhove J (2017) Virtual plant tissue: building blocks for next-generation plant growth simulation. Front Plant Sci 8:686. https://doi.org/10.3389/fpls.2017.00686 · doi:10.3389/fpls.2017.00686
[16] Dupuy L, Mackenzie J, Rudge T, Haseloff J (2008) A system for modelling cell-cell interactions during plant morphogenesis. Ann Bot 101(8):1255-1265. https://doi.org/10.1093/aob/mcm235 · doi:10.1093/aob/mcm235
[17] Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol 17(24):2095-2104. https://doi.org/10.1016/j.cub.2007.11.049 · doi:10.1016/j.cub.2007.11.049
[18] Feroze R, Shawky JH, von Dassow M, Davidson LA (2015) Mechanics of blastopore closure during amphibian gastrulation. Dev Biol 398(1):57-67. https://doi.org/10.1016/j.ydbio.2014.11.011 · doi:10.1016/j.ydbio.2014.11.011
[19] Fletcher AG, Cooper F, Baker RE (2017) Mechanocellular models of epithelial morphogenesis. Philos Trans R Soc B Biol Sci 372(1720):20150519. https://doi.org/10.1098/rstb.2015.0519 · doi:10.1098/rstb.2015.0519
[20] Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120(5):687-700. https://doi.org/10.1016/j.cell.2004.12.026 · doi:10.1016/j.cell.2004.12.026
[21] Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P (2018) PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14(2):e1005991. https://doi.org/10.1371/journal.pcbi.1005991 · doi:10.1371/journal.pcbi.1005991
[22] Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of geometric order in proliferating metazoan epithelia. Nature 442(7106):1038-1041. https://doi.org/10.1038/nature05014 · doi:10.1038/nature05014
[23] Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47(3):2128-2154
[24] Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69(13):2013-2016
[25] Graner F, Sawada Y (1993) Can surface adhesion drive cell rearrangement? J Theor Biol 164:477-506
[26] Harris AK (1976) Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J Theor Biol 61(2):267-285. https://doi.org/10.1016/0022-5193(76)90019-9 · doi:10.1016/0022-5193(76)90019-9
[27] Hester SD, Belmonte JM, Gens JS, Clendenon SG, Glazier JA (2011) A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS Comput Biol 7(10):e1002155
[28] Honda H, Dan-Sohkawa M, Watanabe K (1983) Geometrical analysis of cells becoming organized into a tensile sheet, the blastular wall, in the starfish. Differentiation 25(1-3):16-22. https://doi.org/10.1111/j.1432-0436.1984.tb01332.x · doi:10.1111/j.1432-0436.1984.tb01332.x
[29] Hutson MS, Brodland GW, Yang J, Viens D (2008) Cell sorting in three dimensions: topology, fluctuations, and fluidlike instabilities. Phys Rev Lett 101(14):4
[30] Ishimoto Y, Morishita Y (2014) Bubbly vertex dynamics: a dynamical and geometrical model for epithelial tissues with curved cell shapes. Phys Rev E 90(5-1):052711. https://doi.org/10.1103/PhysRevE.90.052711 · doi:10.1103/PhysRevE.90.052711
[31] Keller EF, Segel LA (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26(3):399-415 · Zbl 1170.92306
[32] Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30(2):225-234. https://doi.org/10.1016/0022-5193(71)90050-6 · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[33] Kim S, Cai M, Hilgenfeldt S (2014) Lewis’ law revisited: the role of anisotropy in size-topology correlations. New J Phys 16(1):015024. https://doi.org/10.1088/1367-2630/16/1/015024 · doi:10.1088/1367-2630/16/1/015024
[34] Krieg MM, Arboleda-Estudillo YY, Puech PHP, Käfer JJ, Graner FF, Müller DJD, Heisenberg CPC (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10(4):429-436
[35] Kudryashova N, Tsvelaya V, Agladze K, Panfilov A (2017) Virtual cardiac monolayers for electrical wave propagation. Sci Rep 7(1):7887. https://doi.org/10.1038/s41598-017-07653-3 · doi:10.1038/s41598-017-07653-3
[36] Lander AD (2007) Morpheus unbound: reimagining the morphogen gradient. Cell 128(2):245-256. https://doi.org/10.1016/j.cell.2007.01.004 · doi:10.1016/j.cell.2007.01.004
[37] Lewis FT (1926) The effect of cell division on the shape and size of hexagonal cells. Anat Rec 33(5):331-355. https://doi.org/10.1002/ar.1090330502 · doi:10.1002/ar.1090330502
[38] Liedekerke P, Palm MM, Jagiella N, Drasdo D (2015) Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Part Mech 2(4):401-444. https://doi.org/10.1007/s40571-015-0082-3 · doi:10.1007/s40571-015-0082-3
[39] Magno R, Grieneisen VA, Marée AF (2015) The biophysical nature of cells: potential cell behaviours revealed by analytical and computational studies of cell surface mechanics. BMC Biophys 8(1):2038. https://doi.org/10.1186/s13628-015-0022-x · doi:10.1186/s13628-015-0022-x
[40] Maree A, Hogeweg P (2002) Modelling dictyostelium discoideum morphogenesis: the culmination. Bull Math Biol 64(2):327-353. https://doi.org/10.1006/bulm.2001.0277 · Zbl 1334.92040 · doi:10.1006/bulm.2001.0277
[41] Merkel M, Manning ML (2017) Using cell deformation and motion to predict forces and collective behavior in morphogenesis. Semin Cell Dev Biol 67:161-169. https://doi.org/10.1016/j.semcdb.2016.07.029 · doi:10.1016/j.semcdb.2016.07.029
[42] Merks, R.; Engquist, B. (ed.), Cell-based modeling, 195-201 (2015), Berlin · doi:10.1007/978-3-540-70529-1_70
[43] Merks RMH, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA (2006) Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289(1):44-54. https://doi.org/10.1016/j.ydbio.2005.10.003 · doi:10.1016/j.ydbio.2005.10.003
[44] Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Physica A 352(1):113-130
[45] Merks RMH, Guravage M, Inzé D, Beemster GTS (2011) VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Phys 155(2):656-666. https://doi.org/10.1104/pp.110.167619 · doi:10.1104/pp.110.167619
[46] Merks RMH, Guravage M, Inze D, Beemster GTS (2011) VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155(2):656-666
[47] Merks, RMH; Guravage, MA; Smet, I. (ed.), Building simulation models of developing plant organs using VirtualLeaf, 333-352 (2012), New York · doi:10.1007/978-1-62703-221-6_23
[48] Newman T (2005) Modeling multicellular systems using subcellular elements. Math Biosci Eng 2(3):613-624 · Zbl 1079.92025
[49] Odell GM, Oster G, Alberch P, Burnside B (1981) The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev Biol 85(2):446-462
[50] Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK, Gavaghan DJ (2017) Comparing individual-based approaches to modelling the self-organization of multicellular tissues. PLoS Comput Biol 13(2):e1005387. https://doi.org/10.1371/journal.pcbi.1005387.s004 · doi:10.1371/journal.pcbi.1005387.s004
[51] Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A (2015) A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull Math Biol 77(6):1132-1165. https://doi.org/10.1007/s11538-015-0080-x · Zbl 1335.92026 · doi:10.1007/s11538-015-0080-x
[52] Palachanis D, Szabó A, Merks RMH (2015) Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation. Comput Part Mech 2(4):371-379. https://doi.org/10.1007/s40571-015-0064-5 · doi:10.1007/s40571-015-0064-5
[53] Palm MM, Dallinga MG, van Dijk E, Klaassen I, Schlingemann RO, Merks RMH (2016) Computational screening of tip and stalk cell behavior proposes a role for apelin signaling in sprout progression. PLoS One 11(11):e0159478. https://doi.org/10.1371/journal.pone.0159478.s016 · doi:10.1371/journal.pone.0159478.s016
[54] Perrone MC, Veldhuis JH, Brodland GW (2016) Non-straight cell edges are important to invasion and engulfment as demonstrated by cell mechanics model. Biomech Model Mechanobiol 15(2):405-418. https://doi.org/10.1007/s10237-015-0697-6 · doi:10.1007/s10237-015-0697-6
[55] Rudge T, Haseloff J (2005) A computational model of cellular morphogenesis in plants. Lect Notes Comput Sci 3630:78-87
[56] Sahlin P, Jönsson H (2010) A modeling study on how cell division affects properties of epithelial tissues under isotropic growth. PLoS One 5(7):e11750. https://doi.org/10.1371/journal.pone.0011750.t002 · doi:10.1371/journal.pone.0011750.t002
[57] Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22(10):536-545. https://doi.org/10.1016/j.tcb.2012.07.001 · doi:10.1016/j.tcb.2012.07.001
[58] Sapala A, Runions A, Routier-Kierzkowska AL, Das Gupta M, Hong L, Hofhuis H, Verger S, Mosca G, Li CB, Hay A, Hamant O, Roeder AH, Tsiantis M, Prusinkiewicz P, Smith RS (2018) Why plants make puzzle cells, and how their shape emerges. eLife 7:e32794. https://doi.org/10.7554/eLife.32794 · doi:10.7554/eLife.32794
[59] Scianna M, Preziosi L (2016) A node-based version of the cellular Potts model. Comput Biol Med 76:94-112. https://doi.org/10.1016/j.compbiomed.2016.06.027 · doi:10.1016/j.compbiomed.2016.06.027
[60] Sluka JP, Fu X, Maaciej S, Belmonte JM, Cosmanescu A, Clendenon SG, Wambaugh JF, Glazier JA (2016) A liver-centric multiscale modeling framework for xenobiotics. PLoS One 11(9):e0162428. https://doi.org/10.1371/journal.pone.0162428.s005 · doi:10.1371/journal.pone.0162428.s005
[61] Smeets B, Alert R, Pešek J, Pagonabarraga I, Ramon H, Vincent R (2016) Emergent structures and dynamics of cell colonies by contact inhibition of locomotion. Proc Natl Acad Sci USA 113(51):14621-14626. https://doi.org/10.1073/pnas.1521151113 · doi:10.1073/pnas.1521151113
[62] Solon J, Kaya-Copur A, Colombelli J, Brunner D (2009) Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137(7):1331-1342. https://doi.org/10.1016/j.cell.2009.03.050 · doi:10.1016/j.cell.2009.03.050
[63] Sozinova O, Jiang Y, Kaiser D, Alber M (2006) A three-dimensional model of myxobacterial fruiting-body formation. Proc Natl Acad Sci USA 103(46):17255-17259. https://doi.org/10.1073/pnas.0605555103 · doi:10.1073/pnas.0605555103
[64] Staple DB, Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F (2010) Mechanics and remodelling of cell packings in epithelia. Eur Phys J E 33(2):117-127. https://doi.org/10.1007/s004540010071 · Zbl 1007.52008 · doi:10.1007/s004540010071
[65] Steinberg M (1963) Reconstruction of tissues by dissociated cells. Science (New York, NY) 141:401-408
[66] Steinberg MS (1996) Adhesion in development: an historical overview. Dev Biol 180(2):377-388. https://doi.org/10.1006/dbio.1996.0312 · doi:10.1006/dbio.1996.0312
[67] Steinberg MS (2007) Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev 17(4):281-286. https://doi.org/10.1016/j.gde.2007.05.002 · doi:10.1016/j.gde.2007.05.002
[68] Sulsky D, Childress S, Percus JK (1984) A model of cell sorting. J Theor Biol 106(3):275-301
[69] Tamulonis C, Postma M, Marlow HQ, Magie CR, de Jong J, Kaandorp J (2010) A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering. Dev Biol 351(1):217-228. https://doi.org/10.1016/j.ydbio.2010.10.017 · doi:10.1016/j.ydbio.2010.10.017
[70] Tanaka S, Sichau D, Iber D (2015) LBIBCell: a cell-based simulation environment for morphogenetic problems. Bioinformatics (Oxford, England) 31(14):2340-2347. https://doi.org/10.1093/bioinformatics/btv147 · doi:10.1093/bioinformatics/btv147
[71] Tlili S, Gauquelin E, Li B, Cardoso O, Ladoux B, Delanoë-Ayari H, Graner F (2018) Collective cell migration without proliferation: density determines cell velocity and wave velocity. R Soc Open Sci 5:172421. https://doi.org/10.1098/rsos.172421 · doi:10.1098/rsos.172421
[72] Toyama Y, Peralta XG, Wells AR, Kiehart DP, Edwards GS (2008) Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science (New York, NY) 321(5896):1683-1686. https://doi.org/10.1126/science.1157052 · doi:10.1126/science.1157052
[73] Voss-Böhme A, Deutsch A (2010) The cellular basis of cell sorting kinetics. J Theor Biol 263(4):419-436. https://doi.org/10.1016/j.jtbi.2009.12.011 · Zbl 1406.92066 · doi:10.1016/j.jtbi.2009.12.011
[74] Weliky M, Oster G (1990) The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. Development (Cambridge, England) 109(2):373-386
[75] Woods ML, Carmona-Fontaine C, Barnes CP, Couzin ID, Mayor R, Page KM (2014) Directional collective cell migration emerges as a property of cell interactions. PLoS One 9(9):e104969. https://doi.org/10.1371/journal.pone.0104969.s012 · doi:10.1371/journal.pone.0104969.s012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.