×

Finite element modelling of surface tension effects using a Lagrangian-Eulerian kinematic description. (English) Zbl 0901.76034

Summary: An algorithm has been devised to model surface tension forces during fluid motion. It makes use of an Eulerian formulation applied to the governing equations, and a Lagrangian treatment of the free surface. It is assumed that the effect of air on the free surface movement is negligible, thus only the fluid domain is considered during the analysis. The free surface is subjected to a surface tension force proportional to the local curvature. The method is validated by modelling the effect of surface tension on a static rod and on a non-equilibrium square rod. Wall adhesion modelling is demonstrated by modelling the wetting of a capillary tube. Finally, the method is used in an industrial context to model the filling of mould cavities for which surface tension forces are important.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids

Software:

RIPPLE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Batchelor, G. K., An Introduction to Fluid Mechanics (1967), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0152.44402
[2] Backer, G. P., Finite element free surface flow analysis: A new tool for foundry engineers, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI. Modelling of Casting, Welding and Advanced Solidification Processes VI, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 21-26, Palm Coast, Florida
[3] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modelling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[4] Brackbill, J. U.; Kothe, D. B.; Zemach, C., RIPPLE: A new model for incompressible flow with free surfaces, AIAA, 30, 2694-2700 (1992) · Zbl 0762.76074
[5] Broyer, E.; Gutfinger, C.; Tadmore, Z., A theoretical model for cavity filling process in injection molding, Trans. Soc. Rehol., 19, 423-444 (1975)
[6] Campbell, J., Castings (1991), Butterworth-Heinemann Ltd.
[7] Davies, J. T.; Rideal, E. K., Interfacial Phenomena (1963), Academic: Academic New York
[8] Donea, J., Arbitrary Lagrangian-Eulerian finite element methods, (Comput. Methods Trans. Analyses (1983), Elsevier: Elsevier Armsterdam), 474-516
[9] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0449.76027
[10] Gabver, D. P.; Grotberg, J. B., J. Fluid. Mech., 213, 127 (1990)
[11] Gao, M.; Dhatt, G.; Cheikh, A. B., A finite element simulation of metal flow in moulds, (Sixth International Conference for Numerical Methods in Thermal Problems (1989)), Swansea, UK
[12] Hartin, J. R., A comparison of implicit and explicit solution techniques and results in numerical casting simulations, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI Palm Coast. Modelling of Casting, Welding and Advanced Solidification Processes VI Palm Coast, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 373-380, Florida
[13] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253 (1974) · Zbl 0292.76018
[14] Hughes, T. J.R., The Finite Element Method — Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall · Zbl 0634.73056
[15] Kreziak, G.; Gilotte, P.; Hamar, R., Modelling of fluid flow during mould filling, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI. Modelling of Casting, Welding and Advanced Solidification Processes VI, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 435-442, Palm Coast, Florida
[16] Lamb, Hydrodynamics (1932), Cambridge University Press: Cambridge University Press Cambridge, UK
[17] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, ((1959), Pergamon: Pergamon NY), 230-234 · Zbl 0146.22405
[18] Levich, V. G., Physicochemical Hydrodynamics (1962), Prentice Hall: Prentice Hall Englewood Cliffs, NJ
[19] Lewis, R. W.; Navti, S. E.; Taylor, C., A Mixed Lagrangian-Eulerian approach to the modelling of fluid flow during mould filling, (Technical Report No. CR/919/96 (April 1996), Department of Civil Engineering, University of Wales: Department of Civil Engineering, University of Wales Swansea), (Accepted for publication in International Journal for Numerical Methods in Fluids.) · Zbl 0902.76060
[20] Lin, H. J.; Tsai, H. L., Numerical simulation of an integrated filling-solidification casting system, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI. Modelling of Casting, Welding and Advanced Solidification Processes VI, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 380-388, Palm Coast, Florida
[21] Lipinski, D. M.; Schaefer, W.; Flender, E., Numerical modelling of the filling sequence and solidification of castings, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI. Modelling of Casting, Welding and Advanced Solidification Processes VI, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 389-396, Palm Coast, Florida
[22] Minaie, B.; Stelson, K. A.; Voller, V. R., Fluid flow and solidification model of die casting, ASME Modelling of Material Processing, MD 3, 35-50 (1987)
[23] Muttin, F.; Coupez, T.; Bellet, M.; Chenot, J. L.C., Lagrangian finite element analysis of time dependent viscous free surface flow using an automatic remeshing technique: applied to casting flow, Int. J. Numer. Methods Engrg., 36, 2001-2015 (1993) · Zbl 0774.76053
[24] Myshkis, A. D.; Babskii, V. G.; Kopachevskii, N. D.; Slobozhanin, L. A.; Tyuptsov, A. D., Low Gravity Fluid Mechanics (1987), Springer-Verlag: Springer-Verlag NY
[25] Napolitano, L. G., Thermodynamics and dynamics of pure interfaces, Acta Astron, 6, 1093-1112 (1978) · Zbl 0441.76081
[26] Navti, S. E., Numerical simulation of free surface flow during mould filling, (Ph.D. Thesis (1996), University of Wales: University of Wales Swansea), C/PhD/206/96 · Zbl 0943.76051
[27] Oguz, H. N.; Sadhal, S. S., J. Fluid. Mech., 194, 563 (1988)
[28] Ohnaka, I., Modelling of fluid flow and solidification in casting, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI. Modelling of Casting, Welding and Advanced Solidification Processes VI, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 337-348, Palm Coast, Florida
[29] Oran, E. S.; Boris, J. P., Numerical Simulation of Reactive Flow (1987), Elsevier: Elsevier NY · Zbl 0762.76098
[30] Ostrach, S., Annual Review of Fluid Mechanics, 14, 313 (1982)
[31] Pruppacher, H. R.; Klett, J. D., Microphysics of Clouds and Precipitation (1978), Reidel: Reidel Dordrecht
[32] Ramaswamy, B.; Kawahara, M., Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface flow, Int. J. Numer. Methods. Fluids., 7, 1053-1074 (1987) · Zbl 0634.76033
[33] Scriven, L. E.; Kistler, S. F., Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system, (Tawai, T., 4th Int. Symp.. 4th Int. Symp., Tokyo. 4th Int. Symp.. 4th Int. Symp., Tokyo, Finite Element Flow Analysis (1982), North-Holland: North-Holland Amsterdam), 503-510 · Zbl 0508.76053
[34] Swaminathan, C. R.; Voller, V., Numerical modelling of filling and solidification in metal casting processes; a unified approach, (Lewis, R. W., International Conference for Numerical Methods in Thermal Problems VIII. International Conference for Numerical Methods in Thermal Problems VIII, Swansea, UK. International Conference for Numerical Methods in Thermal Problems VIII. International Conference for Numerical Methods in Thermal Problems VIII, Swansea, UK, ISBN-0-906674-80-8 (12-16 July 1993)), 284-296
[35] Tadayon, M. R.; Spittle, J. A.; Brown, S. G.R., Fluid flow and heat transfer modelling of mould filling in casting processes, (Lewis, R. W., International Conference for Numerical Methods in Thermal Problems VIII. International Conference for Numerical Methods in Thermal Problems VIII, Swansea, UK. International Conference for Numerical Methods in Thermal Problems VIII. International Conference for Numerical Methods in Thermal Problems VIII, Swansea, UK, ISBN-0-906674-80-8 (12-16 July 1993)), 309-317
[36] Taylor, C.; Hughes, T. G., Finite Element Programming of the Navier-Stokes Equations (1981), Pineridge Press Ltd · Zbl 0476.65083
[37] Usmani, A. S.; Cross, J. T.; Lewis, R. W., A finite element model for the simulations of mould filling in metal casting and associated heat transfer, Int. J. Numer. Methods. Engrg., 35, 787-806 (1992)
[38] Waite, D. M.; Sammonds, T. M., Finite element free surface modelling, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI. Modelling of Casting, Welding and Advanced Solidification Processes VI, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 357-364, Palm Coast, Florida
[39] Wang, S. P.; Wang, K. K., A net inflow method for incompressible viscous flow with moving free surface, Int. J. Numer. Methods in Heat and Fluid Flow, 18, 669-694 (1994) · Zbl 0806.76045
[40] Welch, J. E.; Harlow, F. H.; Shannon, J. P.; Daly, B. J., The MAC Method, Los Almos Scientific Laboratory, Report LA-3425 (1965)
[41] Zhang, Y. F.; Liu, W. K., Casting filling simulation of thin-walled cavities with solidification, (Piwonka, T. S.; Voller, V.; Katgermann, L., Modelling of Casting, Welding and Advanced Solidification Processes VI. Modelling of Casting, Welding and Advanced Solidification Processes VI, The Minerals, Metals and Materials Society, ISBN-0-87339-209-4 (1993)), 413-420, Palm Coast, Florida
[42] Zienkiewicz, O. C.; Liu, Y. C.; Huang, G. C., Error estimates and convergence rates for various incompressible elements, Int. J. Numer. Methods Engrg., 28, 2191-2202 (1989) · Zbl 0717.73074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.