Shaw, Saurabh Bhaskar; Dhindsa, Kiret; Reilly, James P.; Becker, Suzanna Capturing the forest but missing the trees: microstates inadequate for characterizing shorter-scale EEG dynamics. (English) Zbl 1429.92094 Neural Comput. 31, No. 11, 2177-2211 (2019). Summary: The brain is known to be active even when not performing any overt cognitive tasks, and often it engages in involuntary mind wandering. This resting state has been extensively characterized in terms of fMRI-derived brain networks. However, an alternate method has recently gained popularity: EEG microstate analysis. Proponents of microstates postulate that the brain discontinuously switches between four quasi-stable states defined by specific EEG scalp topologies at peaks in the global field potential (GFP). These microstates are thought to be “atoms of thought” involved with visual, auditory, salience, and attention processing. However, this method makes some major assumptions by excluding EEG data outside the GFP peaks and then clustering the EEG scalp topologies at the GFP peaks, assuming that only one microstate is active at any given time. This study explores the evidence surrounding these assumptions by studying the temporal dynamics of microstates and its clustering space using tools from dynamical systems analysis, fractal, and chaos theory to highlight the shortcomings in microstate analysis. The results show evidence of complex and chaotic EEG dynamics outside the GFP peaks, which is being missed by microstate analysis. Furthermore, the winner-takes-all approach of only one microstate being active at a time is found to be inadequate since the dynamic EEG scalp topology does not always resemble that of the assigned microstate, and there is competition among the different microstate classes. Finally, clustering space analysis shows that the four microstates do not cluster into four distinct and separable clusters. Taken collectively, these results show that the discontinuous description of EEG microstates is inadequate when looking at nonstationary short-scale EEG dynamics. MSC: 92C55 Biomedical imaging and signal processing 92B20 Neural networks for/in biological studies, artificial life and related topics Keywords:EEG microstate analysis; “atoms of thought”; EEG scalp topology Software:CARTOOL; t-SNE; Keypy PDF BibTeX XML Cite \textit{S. B. Shaw} et al., Neural Comput. 31, No. 11, 2177--2211 (2019; Zbl 1429.92094) Full Text: DOI OpenURL References: [1] Alonso, L. M. (2017). Nonlinear resonances and multi-stability in simple neural circuits. Chaos, 27(1), 013118. doi: , [2] BenSaïda, A. (2015). A practical test for noisy chaotic dynamics. SoftwareX, 3-4, 1-5. doi: , [3] Britz, J., Van De Ville, D., & Michel, C. M. (2010). BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage, 52(4), 1162-1170. doi: , [4] Brodbeck, V., Kuhn, A., von Wegner, F., Morzelewski, A., Tagliazucchi, E., Borisov, S., … Laufs, H. (2012). EEG microstates of wakefulness and NREM sleep. NeuroImage, 62(3), 2129-2139. doi: , [5] Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal analysis of multichannel EEG: CARTOOL. Computational Intelligence and Neuroscience, 2011, 813870. doi: , [6] Carmeli, C., Knyazeva, M. G., Innocenti, G. M., & De Feo, O. (2005). Assessment of EEG synchronization based on state-space analysis. NeuroImage, 25(2), 339-354. doi: , [7] Corradini, P. L., & Persinger, M. A. (2014). Spectral power, source localization and microstates to quantify chronic deficits from“mil” closed head injury: Correlation with classic neuropsychological tests. Brain Injury, 28(10), 1317-1327. doi: , [8] Custo, A., van der Ville, D., Wells, W. M., Tomescu, I. M., & Michel, C. (2017). EEG resting-state networks: Microstates source localization. Brain Connectivity, 7(10), 671-682. doi: , [9] Das, A., Sampson, A. L., Lainscsek, C., Muller, L., Lin, W., Doyle, J. C., … Sejnowski, T. J. (2017). Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings. Neural Computation, 29(3), 603-642. doi: , · Zbl 1414.92163 [10] Diaz Hernandez, L., Rieger, K., Baenninger, A., Brandeis, D., & Koenig, T. (2016). Towards using microstate-neurofeedback for the treatment of psychotic symptoms in schizophrenia: A feasibility study in healthy participants. Brain Topography, 29(2), 308-321. doi: , [11] Eke, A., Hermán, P., Bassingthwaighte, J., Raymond, G., Percival, D., Cannon, M., … Ikrényi, C. (2000). Physiological time series: Distinguishing fractal noises from motions. Pflügers Archiv—European Journal of Physiology, 439(4), 403-415. doi: , [12] Eke, A., Hermán, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), 1-38. , [13] Faber, P. L., Travis, F., Milz, P., & Parim, N. (2017). EEG microstates during different phases of transcendental meditation practice. Cognitive Processing, 18, 307-314. doi: , [14] Ferenets, R., Lipping, T., Anier, A., Jäntti, V., Melto, S., & Hovilehto, S. (2006). Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Transactions on Biomedical Engineering, 53(6), 1067-1077. doi: , [15] Gärtner, M., Brodbeck, V., Laufs, H., & Schneider, G. (2015). A stochastic model for EEG microstate sequence analysis. NeuroImage, 104, 199-208. doi: , [16] Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., … Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429-437. doi: , [17] Gschwind, M., Hardmeier, M., Van De Ville, D., Tomescu, M. I., Penner, I. K., Naegelin, Y., … Seeck, M. (2016). Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis. NeuroImage: Clinical, 12, 466-477. doi: , [18] Gschwind, M., Michel, C. M., & Van De Ville, D. (2015). Long-range dependencies make the difference—Comment on“A stochastic model for EEG microstate sequence analysis”NeuroImage, 117, 449-455. doi: , [19] Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360-378. doi: , [20] Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187-194. doi: , [21] Khanna, A., Pascual-Leone, A., & Farzan, F. (2014). Reliability of resting-state microstate features in electroencephalography. PLoS ONE, 9(12), 1-21. doi: , [22] Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: Current status and future directions. Neuroscience and Biobehavioral Reviews, 49, 105-113. doi: , [23] Kim, S.-g., Richter, W., & Ugurbil, K. (1997). Limitations of temporal resolution in functional MRI. Magnetic Resonance in Medicine, 37(4), 631-636. doi: , [24] Koenig, T., Kochi, K., & Lehmann, D. (1998). Event-related electric microstates of the brain differ between words with visual and abstract meaning. Electroencephalography and Clinical Neurophysiology, 106(6), 535-546. doi: , [25] Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., … John, E. (2002). Millisecond by millisecond, year by year: Normative EEG microstates and developmental stages. NeuroImage, 16(1), 41-48. doi: , [26] Lehmann, D. (1971). Multichannel topography of human alpha EEG fields. Electroencephalography and Clinical Neurophysiology, 31(5), 439-449. doi: , [27] Lehmann, D. (1990). Brain electric microstates and cognition: The atoms of thought. In E. R. John, T. Harmony, L. S. Prichep, M. Valdés-Sosa, & P. A. Valdés-Sosa (Eds.), Machinery of the mind (pp. 209-224). Boston: Birkhäuser. doi: , [28] Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T., Koukkou, M., … Koenig, T. (2005). EEG microstate duration and syntax in acute, medication-naıve, first-episode schizophrenia: A multi-center study. Psychiatry Research—Neuroimaging, 138(2), 141-156. doi: , [29] Lehmann, D., & Koenig, T. (1997). Spatio-temporal dynamics of alpha brain electric fields, and cognitive modes. International Journal of Psychophysiology, 26(1-3), 99-112. doi: , [30] Lehmann, D., Strik, W. K., Henggeler, B., Koenig, T., & Koukkou, M. (1998). Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. International Journal of Psychophysiology, 29(1), 1-11. doi: , [31] Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the USA, 104(32), 13170-13175. doi: , [32] Mayer, A. R., & Bellgowan, P. S. F. (2014). Functional magnetic resonance imaging in mild traumatic brain injury. In S. M. Slobounov & W. J. Sebastianelli (Eds.), Concussions in athletics. New York: Springer. doi: , [33] Mayhugh, R. E., Moussa, M. N., Simpson, S. L., Lyday, R. G., Burdette, J. H., Porrino, L. J., & Laurienti, P. J. (2016). Moderate-heavy alcohol consumption lifestyle in older adults is associated with altered central executive network community structure during cognitive task. PLoS ONE, 11(8), e0160214. doi: , [34] Meehan, T. P., & Bressler, S. L. (2012). Neurocognitive networks: Findings, models, and theory. Neuroscience and Biobehavioral Reviews, 36(10), 2232-2247. doi: , [35] Menon, R. S., & Kim, S.-g. (1999). Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends in Cognitive Sciences, 3(6), 207-216. doi: , [36] Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506. doi: , [37] Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage(November), 1-17. doi: , [38] Milz, P. (2016). Keypy: An open source library for EEG microstate analysis. European Psychiatry, 33, S493. doi: , [39] Milz, P., Faber, P., Lehmann, D., Koenig, T., Kochi, K., & Pascual-Marqui, R. (2015). The functional significance of EEG microstates: Associations with modalities of thinking. NeuroImage, 125, 643-656. doi: , [40] Milz, P., Faber, P. L., Lehmann, D., Koenig, T., Kochi, K., & Pascual-Marqui, R. D. (2016). The functional significance of EEG microstates: Associations with modalities of thinking. NeuroImage, 125, 643-656. doi: , [41] Milz, P., Pascual-Marqui, R., Achermann, P., Kochi, K., & Faber, P. (2017). The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. NeuroImage, 162, 353-361. doi: , [42] Mizuno, T., Takahashi, T., Cho, R. Y., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y. (2010). Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clinical Neurophysiology, 121(9), 1438-1446. doi: , [43] Nan, X., & Jinghua, X. (1988). The fractal dimension of EEG as a physical measure of conscious human brain activities. Bulletin of Mathematical Biology, 50(5), 559-565. doi: , · Zbl 0657.92006 [44] Natarajan, K., Acharya, U., R., Alias, F., Tiboleng, T., & Puthusserypady, S. K. (2004). Nonlinear analysis of EEG signals at different mental states. Biomedical Engineering Online, 3(1), 7. doi: , [45] Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., … Koenig, T. (2013). EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clinical Neurophysiology, 124(6), 1106-1114. doi: , [46] Panda, R., Bharath, R. D., Upadhyay, N., Mangalore, S., Chennu, S., & Rao, S. L. (2016). Temporal dynamics of the default mode network characterize meditation-induced alterations in consciousness. Frontiers in Human Neuroscience, 10, 372. doi: , [47] Parlar, M., Densmore, M., Hall, G. B., Frewen, P. A., Lanius, R. A., & McKinnon, M. C. (2017). Relation between patterns of intrinsic network connectivity, cognitive functioning, and symptom presentation in trauma-exposed patients with major depressive disorder. Brain and Behavior, 7(5), e00664. doi: , [48] Pascual-Marqui, R., Michel, C., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Transactions on Biomedical Engineering, 42(7), 658-665. doi: , [49] Pascual-Marqui, R. D., Lehmann, D., Faber, P., Milz, P., Kochi, K., Yoshimura, M., … Kinoshita, T. (2014). The resting microstate networks (RMN): Cortical distributions, dynamics, and frequency specific information flow. arXiv:1411.1949, 1-14. doi: , [50] Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology: Heart and Circulatory Physiology, 278(6), 2039-2049. doi: , [51] Rieger, K., Hernandez, L. D., Baenninger, A., & Koenig, T. (2016). Fifteen years of microstate research in schizophrenia: Where are we? A meta-analysis. Frontiers in Psychiatry, 7(February), 1-7. doi: , [52] Sadaghiani, S., Hesselmann, G., Friston, K. J., & Kleinschmidt, A. (2010). The relation of ongoing brain activity, evoked neural responses, and cognition. Frontiers in Systems Neuroscience, 4(June), 20. doi: , [53] Seitzman, B. A., Abell, M., Bartley, S. C., Erickson, M. A., Bolbecker, A. R., & Hetrick, W. P. (2017). Cognitive manipulation of brain electric microstates. NeuroImage, 146(2016), 533-543. doi: , [54] Shaw, S. (2017). Real-time filtering of gradient artifacts from simultaneous EEG-fMRI data. In Proceedings of the 2017 International Workshop on Pattern Recognition in Neuroimaging. doi: , [55] Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10(02), 161. doi: , [56] Sockeel, S., Schwartz, D., Pélégrini-Issac, M., & Benali, H. (2016). Large-scale functional networks identified from resting-state EEG using spatial ICA. PLoS ONE, 11(1), e0146845. doi: , [57] Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology, 116(10), 2266-2301. doi: , [58] Sun, Y., Lim, J., Kwok, K., & Bezerianos, A. (2014). Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks. Brain and Cognition, 85(1), 220-230. doi: , [59] Sun, Y., Yin, Q., Fang, R., Yan, X., Wang, Y., Bezerianos, A., … Sun, J. (2014). Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer’s disease. PLoS ONE, 9(5). doi: , [60] Suzuki, Y., Lu, M., Ben-Jacob, E., & Onuchic, J. N. (2016). Periodic, quasiperiodic and chaotic dynamics in simple gene elements with time delays. Scientific Reports, 6, 1-13. doi: , [61] Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423. doi: , · Zbl 0979.62046 [62] Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625-637. doi: , [63] Van Der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research, 9, 2579-2605. doi: , · Zbl 1225.68219 [64] Van de Ville, D., Britz, J., & Michel, C. M. (2010). EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proceedings of the National Academy of Sciences of the U.S.A., 107(42), 18179-18184. doi: , [65] von Wegner, F., Tagliazucchi, E., & Laufs, H. (2017). Information-theoretical analysis of resting state EEG microstate sequences: Non-Markovianity, nonstationarity and periodicities. NeuroImage, 158(June), 99-111. doi: , [66] Wackermann, J. (1999). Towards a quantitative characterisation of functional states of the brain: From the non-linear methodology to the global linear description. International Journal of Psychophysiology, 34(1), 65-80. doi: , [67] Wakin, M., Becker, S., Nakamura, E., Grant, M., Sovero, E., Ching, D., … Candes, E. (2012). A nonuniform sampler for wideband spectrally-sparse environments. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(3), 516-529. doi: , [68] Wang, Y., Kang, J., Kemmer, P. B., & Guo, Y. (2016). An effcient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation. Frontiers in Neuroscience, 10(March). doi: , [69] Wolf, A. (1986). Quantifying chaos with Lyapunov exponents. In A. V. Holden (Ed.), Chaos. Princeton, NJ: Princeton University Press. , [70] Yuan, H., Zotev, V., Phillips, R., Drevets, W. C., & Bodurka, J. (2012). Spatiotemporal dynamics of the brain at rest: Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. NeuroImage, 60(4), 2062-2072. doi: , [71] Zhang, R., Xu, P., Chen, R., Li, F., Guo, L., Li, P., … Yao, D. (2015). Predicting inter-session performance of SMR-based BrainComputer interface using the spectral entropy of resting-state EEG. Brain Topography, 28(5), 680-690. doi: , This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.