×

Theoretical analysis of the deformation of SMP sandwich beam in flexure. (English) Zbl 1271.74274

Summary: Shape memory polymers (SMPs) can have a large frozen strain but with a very small recovery stiffness in comparison with shape memory metals or ceramics. To provide more deployable stresses for the application of actuators, sandwich beams consisting of a SMP core and two thin metallic skins were considered. The packaging behaviors of two types of SMP sandwich beams, aluminum/SMP/aluminum and steel/SMP/steel, were discussed. Due to the high compliance of SMP core on packaging condition that the testing temperature is above the activation temperature of the material, buckling and post-buckling are the essential deformation mechanisms of SMP sandwich beams under bending. Theoretical solutions were derived in studying such non-linear behaviors, including the initiation of critical buckling, post-buckling response, and final failure modes. Systematic parameter’s analyses, e.g., buckling half-wavelength, amplitude, location of the neutral-strain surface in different packaging curvatures, were also presented.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E30 Composite and mixture properties
74G60 Bifurcation and buckling

Software:

pyuvdata
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wei Z.G., Sandröm R.: Review shape-memory materials and hybrid composites for smart systems part I shape-memory materials. J. Mater. Sci. 33, 3743–3762 (1998) · doi:10.1023/A:1004692329247
[2] Robin J., Martinot S., Curtil A. et al.: Experimental right ventricle to pulmonary artery discontinuity: outcome of polyurethane valved conduits. J. Thorac. Cardiovasc. Surg. 115(4), 898–903 (1998) · doi:10.1016/S0022-5223(98)70372-1
[3] Feninat F.E., Laroche G., Fiset M. et al.: Shape memory materials for biomedical applications. Adv. Eng. Mater. 4(3), 91–104 (2002) · doi:10.1002/1527-2648(200203)4:3<91::AID-ADEM91>3.0.CO;2-B
[4] Lendlein A., Langer R.: Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002) · doi:10.1126/science.1066102
[5] Gall K., Kreiner P., Turner D. et al.: Shape-memory polymers for microelectromechanical systems. J. Microelectrome 13(3), 472–483 (2004) · doi:10.1109/JMEMS.2004.828727
[6] Liang C., Rogers C.A., Malafeew E.: Investigation of shape memory polymers and their hybrid composites. J. Int. Mater. Syst. Struct. 8, 380–386 (1997) · doi:10.1177/1045389X9700800411
[7] Ni, Q.Q., Ohsako, N., Ohki, T., et al.: Development of smart composites based on shape memory polymer. In: International symposium on smart structures and microsystems. Hong Kong (2000)
[8] Gall K., Dunn M.L., Liu Y. et al.: Shape memory polymer nanocomposites. Acta Mater. 5, 5115–5126 (2000)
[9] Lake, M.S., Munshi, N.A., Tupper, M.L.: Application of elastic memory composite materials to deployable space structures. AIAA. Paper no. 2001–4602 (2001)
[10] Tupper M., Gall K., Mikulas M. et al.: Developments in elastic memory composite materials for spacecraft deployable structures. IEEE 5, 2541–2547 (2001)
[11] Mark, S.L., Hazelton, C.S.: Development of coilable longerons using elastic memory composite material. AIAA. Paper no. 2002–1453 (2002)
[12] Campbell, D., Maji, A.K.: Deployment precision and mechanics of elastic memory composites. AIAA. Paper no. 2003–1495 (2003)
[13] Campbell, D., Lake, M.S., Scherbarth, M.R.: Elastic memory composite materials: an enabling technology for future furable space structures. In: 46th Structural Dynamics, and Materials Conference. Austin, Texas (2005)
[14] Campbell, D., Barrett, R., Lake, M.S. et al.: Development of a novel, passively deployed solar array. AIAA. Paper no. 2006–2080 (2006)
[15] Xiong Z.Y., Wang Z.D., Li Z.F. et al.: Micromechanism of deformation in EMC laminates. Mater. Sci. Eng. A 496, 323–328 (2008) · doi:10.1016/j.msea.2008.05.029
[16] Allen, H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon, London, Chaps. 9–10 (1969)
[17] Zenkert, D.: An Introduction to Sandwich Construction. Chameleon, London, Chaps. 3, 4, and 12 (1995)
[18] Frostig Y., Baruch M., Vilnay O. et al.: High-order theory for sandwich–beam behavior with transversely flexible core. J. Eng. Mech. 118(5), 1026–1043 (1994) · doi:10.1061/(ASCE)0733-9399(1992)118:5(1026)
[19] Frostig Y., Baruch M.: Free vibrations of sandwich beams with a transversely flexible core: a high order approach. J. Sound Vib. 176(2), 195–208 (1994) · Zbl 0945.74579 · doi:10.1006/jsvi.1994.1368
[20] Reddy, J.N.: Mechanics of Laminated Composite Plates. Theory and Analysis, CRC Press, Boca Raton, FL, 1997, Chap. 5 (1997) · Zbl 0899.73002
[21] Francis, W.H., Lake, M.S.: A review of classical fiber microbuckling analytical solutions for use with elastic memory composites. AIAA 2006–1764 (2006)
[22] Wang Z.D., Li Z.F., Wang Y.S.: Micro-buckling solution of elastic memory laminates under bending. J. Intell. Mater. Syst. Struct. 20, 1565–1572 (2009) · doi:10.1177/1045389X09102558
[23] Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill Book Co., Inc., pp. 109–115 (1936)
[24] Murphey, T.W., Meink, T., Mikulas, M.: Some micromechanics considerations of the folding of rigidizable composite materials. AIAA Journal, AIAA. Paper no. 2001–1418 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.