Doukas, Haris; Nikas, Alexandros Decision support models in climate policy. (English) Zbl 1431.91275 Eur. J. Oper. Res. 280, No. 1, 1-24 (2020). Summary: Climate change is considered among the most critical risks that global society faces in this century. So far, climate policy strategies have been evaluated by means of a variety of climate-economy models, or integrated assessment models (IAMs), in the aim of supporting climate-related decision making. However, their inherent complexity, the number and nature of driving assumptions, and usual exclusion of stakeholders from the modelling process raise the issue of the extent to which they can provide fruitful insights for policy makers. Moreover, as with all modelling frameworks, IAMs inevitably fail to incorporate all relevant types of uncertainty and risk when used as stand-alone tools. This exclusion can have a significant impact on the model outcomes, but can be mitigated if experts’ knowledge is elicited in a structured manner and effectively taken into account, towards identifying such factors or reducing respective knowledge gaps. At the same time, a growing number of research publications have been suggesting decision support frameworks for assessing specific aspects in climate policy, based on “bottom-up” approaches and participatory processes. The objective of this paper is to provide a critical review of such frameworks – namely portfolio analysis, multiple criteria decision making and fuzzy cognitive maps – in order to explore their strengths and weaknesses in this area, and propose a new integrative approach, appropriately exploiting blends of these frameworks, to productively complement IAMs, towards enhancing climate policy support. Cited in 1 Document MSC: 91B76 Environmental economics (natural resource models, harvesting, pollution, etc.) 91B06 Decision theory Keywords:decision support; climate policy; fuzzy cognitive maps; multiple criteria decision making; portfolio analysis Software:WASP PDFBibTeX XMLCite \textit{H. Doukas} and \textit{A. Nikas}, Eur. J. Oper. Res. 280, No. 1, 1--24 (2020; Zbl 1431.91275) Full Text: DOI OA License References: [1] Adabi, F.; Mozafari, B.; Ranjbar, A. M.; Soleymani, S., Applying portfolio theory-based modified ABC to electricity generation mix, International Journal of Electrical Power & Energy Systems, 80, 356-362 (2016) [2] Agrawala, S.; Bosello, F.; Carraro, C.; de Bruin, K.; De Cian, E.; Dellink, R., Plan or react? Analysis of adaptation costs and benefits using integrated assessment models (2010), OECD, Environment Working Papers, (23), 0_1 [3] Albrecht, J., The future role of photovoltaics: A learning curve versus portfolio perspective, Energy Policy, 35, 4, 2296-2304 (2007) [4] Allan, G.; Eromenko, I.; McGregor, P.; Swales, K., The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies, Energy Policy, 39, 1, 6-22 (2011) [5] Almaraz, S. D.L.; Azzaro-Pantel, C.; Montastruc, L.; Pibouleau, L.; Senties, O. B., Assessment of mono and multi-objective optimization to design a hydrogen supply chain, International Journal of Hydrogen Energy, 38, 33, 14121-14145 (2013) [6] AlSabbagh, M.; Siu, Y. L.; Guehnemann, A.; Barrett, J., Integrated approach to the assessment of \(CO_2\) e-mitigation measures for the road passenger transport sector in Bahrain, Renewable and Sustainable Energy Reviews, 71, 203-215 (2017) [7] Amer, M.; Daim, T. U.; Jetter, A., Technology roadmap through fuzzy cognitive map-based scenarios: The case of wind energy sector of a developing country, Technology Analysis & Strategic Management, 28, 2, 131-155 (2016) [8] Amer, M.; Jetter, A.; Daim, T., Development of fuzzy cognitive map (FCM)-based scenarios for wind energy, International Journal of Energy Sector Management, 5, 4, 564-584 (2011) [9] Anezakis, V. D.; Dermetzis, K.; Iliadis, L.; Spartalis, S., Fuzzy cognitive maps for long-term prognosis of the evolution of atmospheric pollution, based on climate change scenarios: The case of athens, (Proceedings of the international conference on computational collective intelligence (2016), Springer International Publishing), 175-186 [10] Antunes, C. H.; Martins, A. G.; Brito, I. S., A multiple objective mixed integer linear programming model for power generation expansion planning, Energy, 29, 4, 613-627 (2004) [11] Arnesano, M.; Carlucci, A. P.; Laforgia, D., Extension of portfolio theory application to energy planning problem - The Italian case, Energy, 39, 1, 112-124 (2012) [12] Ashnani, M. H.M.; Miremadi, T.; Johari, A.; Danekar, A., Environmental impact of alternative fuels and vehicle technologies: A life cycle assessment perspective, Procedia Environmental Sciences, 30, 205-210 (2015) [13] Auvinen, H.; Ruutu, S.; Tuominen, A.; Ahlqvist, T.; Oksanen, J., Process supporting strategic decision-making in systemic transitions, Technological Forecasting and Social Change, 94, 97-114 (2015) [14] Awerbuch, S., Investing in photovoltaics: Risk, accounting and the value of new technology, Energy Policy, 28, 14, 1023-1035 (2000) [15] Awerbuch, S., Portfolio-based electricity generation planning: Policy implications for renewables and energy security, Mitigation and Adaptation Strategies for Global Change, 11, 3, 693-710 (2006) [16] Awerbuch, S.; Berger, M., Applying portfolio theory to EU electricity planning and policy making (2003), EET, IAEA/EET Working Paper No. 03 [17] Awerbuch, S.; Stirling, A.; Jansen, J. C.; Beurskens, L. W., Full-spectrum portfolio and diversity analysis of energy technologies, Managing Enterprise Risk, 202-222 (2006), Elsevier Science Ltd [19] Baležentis, T.; Streimikiene, D., Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation, Applied Energy, 185, 862-871 (2017) [20] Barker, T.; Zagame, P., E3ME: An energy-environment-economy model for Europe (1995), European Commission: European Commission Brüssel [21] Barker, T.; Pan, H.; Köhler, J.; Warren, R.; Winne, S., Decarbonizing the global economy with induced technological change: Scenarios to 2100 using E3MG, The Energy Journal, 27, 241-258 (2006) [22] Bar‐Lev, D.; Katz, S., A portfolio approach to fossil fuel procurement in the electric utility industry, The Journal of Finance, 31, 3, 933-947 (1976) [23] Barron, R.; Djimadoumbaye, N.; Baker, E., How grid integration costs impact the optimal R&D portfolio into electricity supply technologies in the face of climate change, Sustainable Energy Technologies and Assessments, 7, 22-29 (2014) [24] Batubara, M.; Purwanto, W. W.; Fauzi, A., Proposing a decision-making process for the development of sustainable oil and gas resources using the petroleum fund: A case study of the East Natuna gas field, Resources Policy, 49, 372-384 (2016) [25] Behzadian, M.; Kazemzadeh, R. B.; Albadvi, A.; Aghdasi, M., PROMETHEE: A comprehensive literature review on methodologies and applications, European Journal of Operational Research, 200, 1, 198-215 (2010) · Zbl 1189.90074 [26] Belton, V.; Stewart, T., Multiple criteria decision analysis: An integrated approach (2002), Springer Science & Business Media [27] Benestad, R. E.; Nuccitelli, D.; Lewandowsky, S.; Hayhoe, K.; Hygen, H. O.; van Dorland, R., Learning from mistakes in climate research, Theoretical and Applied Climatology, 126, 3-4, 699-703 (2016) [28] Bhattacharya, A.; Kojima, S., Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method, Energy Policy, 40, 69-80 (2012) [29] Biloslavo, R.; Dolinšek, S., Scenario planning for climate strategies development by integrating group Delphi, AHP and dynamic fuzzy cognitive maps, Foresight, 12, 2, 38-48 (2010) [30] Biloslavo, R.; Grebenc, A., Integrating group Delphi, analytic hierarchy process and dynamic fuzzy cognitive maps for a climate warning scenario, Kybernetes, 41, 3/4, 414-428 (2012) [31] Black, F.; Litterman, R., Global portfolio optimization, Financial Analysts Journal, 48, 5, 28-43 (1992) [32] Blechinger, P. F.H.; Shah, K. U., A multi-criteria evaluation of policy instruments for climate change mitigation in the power generation sector of Trinidad and Tobago, Energy Policy, 39, 10, 6331-6343 (2011) [33] Bollen, J. C.; Gielen, A. M., Economic impacts of multilateral emission reduction policies: Simulations with WorldScan, (Proceedings of the international environmental agreements on climate change. Proceedings of the international environmental agreements on climate change, Netherlands (1999), Springer), 155-167 [34] Borges, P. C.; Villavicencio, A., Avoiding academic and decorative planning in GHG emissions abatement studies with MCDA: The Peruvian case, European Journal of Operational Research, 152, 3, 641-654 (2004) · Zbl 1045.90037 [35] Bosello, F.; De Cian, E.; Eboli, F.; Parrado, R., Macro-economic assessment of climate change impactsA regional and sectoral perspective. Impacts of climate change and biodiversity effects (2009), European Investment Bank, University Research Sponsorship Programme, Final report of the CLIBIO project [36] Branco, D. A.C.; Rathmann, R.; Borba, B. S.M.; de Lucena, A. F.P.; Szklo, A.; Schaeffer, R., A multicriteria approach for measuring the carbon-risk of oil companies, Energy Strategy Reviews, 1, 2, 122-129 (2012) [37] Brand, B.; Missaoui, R., Multi-criteria analysis of electricity generation mix scenarios in Tunisia, Renewable and Sustainable Energy Reviews, 39, 251-261 (2014) [38] Brans, J. P.; Vincke, P.; Mareschal, B., How to select and how to rank projects: The PROMETHEE method, European Journal of Operational Research, 24, 2, 228-238 (1986) · Zbl 0576.90056 [39] Brown, S. M., Cognitive mapping and repertory grids for qualitative survey research: Some comparative observations, Journal of Management Studies, 29, 3, 287-307 (1992) [40] Our common future: The world commission on environment and development (1987), Oxford University Press: Oxford University Press United Nations, ISBN: 019282080X [41] Buonanno, P.; Carraro, C.; Galeotti, M., Endogenous induced technical change and the costs of Kyoto, Resource and Energy Economics, 25, 1, 11-34 (2003) [42] Buurman, J.; Babovic, V., Adaptation pathways and real options analysis: An approach to deep uncertainty in climate change adaptation policies, Policy and Society, 35, 2, 137-150 (2016) [43] Büyüközkan, G.; Güleryüz, S., Evaluation of renewable energy resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations, Energy, 123, 149-163 (2017) [44] Büyüközkan, G.; Karabulut, Y., Energy project performance evaluation with sustainability perspective, Energy, 119, 549-560 (2017) [45] Carraro, C.; Galeotti, M.; Gallo, M., Environmental taxation and unemployment: Some evidence on the ‘double dividend hypothesis’ in Europe, Journal of Public Economics, 62, 1, 141-181 (1996) [46] Ceccato, L., Three essays on participatory processes and integrated water resource management in developing countries (2012), Università Ca’ Foscari Venezia, Venice [47] Çelik, F. D., Ozesmi, U., & Akdogan, A. (2005). Participatory ecosystem management planning at Tuzla Lake (Turkey) using fuzzy cognitive mapping. arXiv preprint q-bio/0510015.; Çelik, F. D., Ozesmi, U., & Akdogan, A. (2005). Participatory ecosystem management planning at Tuzla Lake (Turkey) using fuzzy cognitive mapping. arXiv preprint q-bio/0510015. [48] Chalabi, Z.; Kovats, S., Tools for developing adaptation policy to protect human health, Mitigation and Adaptation Strategies for Global Change, 19, 3, 309-330 (2014) [49] Chalvatzis, K. J.; Rubel, K., Electricity portfolio innovation for energy security: The case of carbon constrained China, Technological Forecasting and Social Change, 100, 267-276 (2015) [50] Chang, P. L.; Hsu, C. W.; Lin, C. Y., Assessment of hydrogen fuel cell applications using fuzzy multiple-criteria decision making method, Applied Energy, 100, 93-99 (2012) [51] Chen, C. T., Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1, 1-9 (2000) · Zbl 0963.91030 [52] Chen, L.; Pan, W., A BIM-integrated fuzzy multi-criteria decision making model for selecting low-carbon building measures, Procedia Engineering, 118, 606-613 (2015) [53] Christen, B.; Kjeldsen, C.; Dalgaard, T.; Martin-Ortega, J., Can fuzzy cognitive mapping help in agricultural policy design and communication?, Land Use Policy, 45, 64-75 (2015) [54] Cootner, P. H., The random character of stock market prices (1964), MIT Press [55] Cowan, K.; Daim, T.; Anderson, T., Exploring the impact of technology development and adoption for sustainable hydroelectric power and storage technologies in the Pacific Northwest United States, Energy, 35, 12, 4771-4779 (2010) [56] Cristóbal, S.; Ramón, J., A goal programming model for environmental policy analysis: Application to Spain, Energy Policy, 43, 303-307 (2012) [57] Crowe, K. A.; Parker, W. H., Using portfolio theory to guide reforestation and restoration under climate change scenarios, Climatic Change, 89, 3, 355-370 (2008) [58] Cucchiella, F.; Gastaldi, M.; Trosini, M., Investments and cleaner energy production: A portfolio analysis in the Italian electricity market, Journal of Cleaner Production, 142, 121-132 (2017) [59] Cutz, L.; Haro, P.; Santana, D.; Johnsson, F., Assessment of biomass energy sources and technologies: The case of Central America, Renewable and Sustainable Energy Reviews, 58, 1411-1431 (2016) [60] Dace, E.; Blumberga, D., How do 28 European Union Member States perform in agricultural greenhouse gas emissions? It depends on what we look at: Application of the multi-criteria analysis, Ecological Indicators, 71, 352-358 (2016) [61] de Bremond, A.; Engle, N. L., Adaptation policies to increase terrestrial ecosystem resilience: Potential utility of a multicriteria approach, Mitigation and Adaptation Strategies for Global Change, 19, 3, 331-354 (2014) [62] de Bruin, K.; Dellink, R. B.; Ruijs, A.; Bolwidt, L.; van Buuren, A.; Graveland, J., Adapting to climate change in The Netherlands: An inventory of climate adaptation options and ranking of alternatives, Climatic Change, 95, 1, 23-45 (2009) [63] Delarue, E.; De Jonghe, C.; Belmans, R.; D’haeseleer, W., Applying portfolio theory to the electricity sector: Energy versus power, Energy Economics, 33, 1, 12-23 (2011) [64] Den Hartog, H.; Tjan, H. S., A clay – clay vintage model approach for sectors of industry in Netherlands, De Economist, 128, 2, 129-188 (1980) [65] Di Lullo, G.; Zhang, H.; Kumar, A., Evaluation of uncertainty in the well-to-tank and combustion greenhouse gas emissions of various transportation fuels, Applied Energy, 184, 413-426 (2016) [66] Diakoulaki, D.; Antunes, C. H.; Gomes Martins, A., MCDA and energy planning, Multiple criteria decision analysis: State of the art surveys, 859-890 (2005), Springer: Springer New York, NY · Zbl 1072.90016 [67] Diakoulaki, D.; Georgiou, P.; Tourkolias, C.; Georgopoulou, E.; Lalas, D.; Mirasgedis, S., A multicriteria approach to identify investment opportunities for the exploitation of the clean development mechanism, Energy Policy, 35, 2, 1088-1099 (2007) [68] Dickerson, J. A.; Kosko, B., Virtual worlds as fuzzy cognitive maps, Presence: Teleoperators & Virtual Environments, 3, 2, 173-189 (1994) [69] Dixit, A. K.; Pindyck, R. S., Investment under uncertainty (1994), Princeton University Press [70] Doukas, H., Modelling of linguistic variables in multicriteria energy policy support, European Journal of Operational Research, 227, 2, 227-238 (2013) [71] Doukas, H.; Patlitzianas, K. D.; Psarras, J., Supporting sustainable electricity technologies in Greece using MCDM, Resources Policy, 31, 2, 129-136 (2006) [72] Doukas, H.; Nikas, A.; González-Eguino, M.; Arto, I.; Anger-Kraavi, A., From integrated to integrative: Delivering on the Paris agreement, Sustainability, 10, 7, 2299 (2018) [73] Doumpos, M.; Zopounidis, C., Preference disaggregation and statistical learning for multicriteria decision support: A review, European Journal of Operational Research, 209, 3, 203-214 (2011) · Zbl 1205.90147 [74] Dowlatabadi, H., Integrated assessment models of climate change: An incomplete overview, Energy Policy, 23, 4, 289-296 (1995) [75] Dowlatabadi, H., Sensitivity of climate change mitigation estimates to assumptions about technical change, Energy Economics, 20, 5, 473-493 (1998) [76] Dowlatabadi, H., Bumping against a gas ceiling, Climatic Change, 46, 3, 391-407 (2000) [77] Durbach, I. N.; Stewart, T. J., Modeling uncertainty in multi-criteria decision analysis, European Journal of Operational Research, 223, 1, 1-14 (2012) · Zbl 1253.91047 [78] Eden, C.; Ackermann, F., Making strategy: The journey of strategic management (2013), Sage: Sage London [79] Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Minx, C. J.; Farahani, E.; Kadner, S., Working Group III contribution to the fifth assessment report of the intergovernmental panel on climate change (2014), Intergovernmental Panel on Climate Change [80] Edmonds, J.; Reiley, J. M., Global energy-assessing the future (1985), Oxford University Press [81] Edsand, H. E., Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context, Technology in Society, 49, 1-15 (2017) [82] Fishbone, L. G.; Abilock, H., Markal, a linear‐programming model for energy systems analysis: Technical description of the bnl version, International Journal of Energy Research, 5, 4, 353-375 (1981) [83] Flues, F.; Löschel, A.; Lutz, B. J.; Schenker, O., Designing an EU energy and climate policy portfolio for 2030: Implications of overlapping regulation under different levels of electricity demand, Energy Policy, 75, 91-99 (2014) [84] Forouli, A.; Gkonis, N.; Nikas, A.; Siskos, E.; Doukas, H.; Tourkolias, C., Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets, Energy, 170, 818-831 (2019) [85] Fozer, D.; Sziraky, F. Z.; Racz, L.; Nagy, T.; Tarjani, A. J.; Toth, A. J.; Mizsey, P., Life cycle, PESTLE and multi-criteria decision analysis of CCS process alternatives, Journal of Cleaner Production, 147, 75-85 (2017) [86] Fuss, S.; Szolgayová, J.; Khabarov, N.; Obersteiner, M., Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects, Energy Policy, 40, 59-68 (2012) [87] Füssel, H., Modeling impacts and adaptation in global IAMs, Wiley Interdisciplinary Reviews: Climate Change, 1, 2, 288-303 (2010) [88] Geels, F. W., A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies, Journal of Transport Geography, 24, 471-482 (2012) [89] Georgakellos, D. A., Climate change external cost appraisal of electricity generation systems from a life cycle perspective: The case of Greece, Journal of Cleaner production, 32, 124-140 (2012) [90] Georgopoulou, E.; Sarafidis, Y.; Mirasgedis, S.; Zaimi, S.; Lalas, D. P., A multiple criteria decision-aid approach in defining national priorities for greenhouse gases emissions reduction in the energy sector, European Journal of Operational Research, 146, 1, 199-215 (2003) · Zbl 1011.90520 [91] Ghaderi, S. F.; Azadeh, A.; Nokhandan, B. P.; Fathi, E., Behavioral simulation and optimization of generation companies in electricity markets by fuzzy cognitive map, Expert Systems with Applications, 39, 5, 4635-4646 (2012) [92] Ghafghazi, S.; Sowlati, T.; Sokhansanj, S.; Melin, S., A multicriteria approach to evaluate district heating system options, Applied Energy, 87, 4, 1134-1140 (2010) [93] Giordano, R.; Passarella, G.; Vurro, M., Fuzzy cognitive maps for conflict analysis and dissolution in drought risk management, Plurimondi, 7 (2010) [94] Goulder, L. H., Environmental taxation and the double dividend: A reader’s guide, International Tax and Public Finance, 2, 2, 157-183 (1995) [95] Govindan, K.; Jepsen, M. B., ELECTRE: A comprehensive literature review on methodologies and applications, European Journal of Operational Research, 250, 1, 1-29 (2016) · Zbl 1346.90425 [96] Gray, S. A.; Gray, S.; Cox, L. J.; Henly-Shepard, S., Mental modeler: A fuzzy-logic cognitive mapping modeling tool for adaptive environmental management, (Proceedings of the forty-sixth Hawaii international conference on system sciences (HICSS) (2013), IEEE), 965-973 [97] Gray, S. A.; Gray, S.; De Kok, J. L.; Helfgott, A. E.R.; O’Dwyer, B.; Jordan, R., Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems, Ecology and Society, 20, 2 (2015) [98] Gray, S. R.J; Gagnon, A. S.; Gray, S. A.; O’Dwyer, B.; O’Mahony, C.; Muir, D., Are coastal managers detecting the problem? Assessing stakeholder perception of climate vulnerability using Fuzzy Cognitive Mapping, Ocean & Coastal Management, 94, 74-89 (2014) [99] Greco, S.; Ehrgott, M.; Figueira, J. R., Multiple criteria decision analysis: State of the art surveys. Multiple criteria decision analysis: State of the art surveys, International Series in Operations Research & Management Science, 1-2 (2016), Springer, (Eds) · Zbl 1339.90011 [100] Hedenus, F.; Azar, C.; Lindgren, K., Induced technological change in a limited foresight optimization model, The Energy Journal, 27, 109-122 (2006) [101] Hellsmark, H.; Jacobsson, S., Opportunities for and limits to academics as system builders—The case of realizing the potential of gasified biomass in Austria, Energy Policy, 37, 12, 5597-5611 (2009) [102] Heo, E.; Kim, J.; Boo, K. J., Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP, Renewable and Sustainable Energy Reviews, 14, 8, 2214-2220 (2010) [103] Hobbs, B. F.; Ludsin, S. A.; Knight, R. L.; Ryan, P. A.; Biberhofer, J.; Ciborowski, J. J., Fuzzy cognitive mapping as a tool to define management objectives for complex ecosystems, Ecological Applications, 12, 5, 1548-1565 (2002) [104] Hope, C., The marginal impact of \(CO_2\) from PAGE2002: An integrated assessment model incorporating the IPCC’s five reasons for concern, Integrated Assessment, 6, 1, 19-56 (2006) [105] Hsueh, S. L., Assessing the effectiveness of community-promoted environmental protection policy by using a Delphi-fuzzy method: A case study on solar power and plain afforestation in Taiwan, Renewable and Sustainable Energy Reviews, 49, 1286-1295 (2015) [106] Hua, S.; Liang, J.; Zeng, G.; Xu, M.; Zhang, C.; Yuan, Y., How to manage future groundwater resource of China under climate change and urbanization: An optimal stage investment design from modern portfolio theory, Water Research, 85, 31-37 (2015) [107] Huang, S. C.; Lo, S. L.; Lin, Y. C., Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power, Energy Policy, 63, 851-861 (2013) [108] Huang, Y. H.; Wu, J. H., A portfolio risk analysis on electricity supply planning, Energy Policy, 36, 2, 627-641 (2008) [109] Huff, A. S., Mapping strategic thought (1990), John Wiley & Sons [110] Humpenöder, F.; Schaldach, R.; Cikovani, Y.; Schebek, L., Effects of land-use change on the carbon balance of 1st generation biofuels: An analysis for the European Union combining spatial modeling and LCA, Biomass and Bioenergy, 56, 166-178 (2013) [111] International Emissions Trading Association, Wien Automatic System Planning (WASP) package: A computer code for power generating system expansion planning version WASP-IV with user interface user’s manual, 13-150 (2006), IAEA: IAEA Vienna, Austria [112] Jansen, J. C.; Beurskens, L.; Van Tilburg, X., Application of portfolio analysis to the Dutch generating mix (2006), ECN, Energy Research Center at the Netherlands (ECN) Report C-05-100 [113] Javid, R. J.; Nejat, A.; Hayhoe, K., Selection of \(CO_2\) mitigation strategies for road transportation in the United States using a multi-criteria approach, Renewable and Sustainable Energy Reviews, 38, 960-972 (2014) [114] Jayaraman, R.; Colapinto, C.; La Torre, D.; Malik, T., Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates, Energy Policy, 87, 447-454 (2015) [115] Jebaraj, S.; Iniyan, S., A review of energy models, Renewable and Sustainable Energy Reviews, 10, 4, 281-311 (2006) [116] Jetter, A.; Schweinfort, W., Building scenarios with fuzzy cognitive maps: An exploratory study of solar energy, Futures, 43, 1, 52-66 (2011) [117] Jun, K. S.; Chung, E. S.; Kim, Y. G.; Kim, Y., A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts, Expert Systems with Applications, 40, 4, 1003-1013 (2013) [118] Kafetzis, A.; McRoberts, N.; Mouratiadou, I., Using fuzzy cognitive maps to support the analysis of stakeholders’ views of water resource use and water quality policy, Fuzzy cognitive maps, 383-402 (2010), Springer: Springer Berlin Heidelberg [119] Karakosta, C.; Doukas, H.; Psarras, J., Directing clean development mechanism towards developing countries’ sustainable development priorities, Energy for Sustainable Development, 13, 2, 77-84 (2009) [120] Karavas, C. S.; Kyriakarakos, G.; Arvanitis, K. G.; Papadakis, G., A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids, Energy Conversion and Management, 103, 166-179 (2015) [121] Kaya, T.; Kahraman, C., Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology, Expert Systems with Applications, 38, 6, 6577-6585 (2011) [122] Kayikci, Y.; Stix, V., Causal mechanism in transport collaboration, Expert Systems with Applications, 41, 4, 1561-1575 (2014) [123] Kelly, D. L.; Kolstad, C. D., Integrated assessment models for climate change control, International Yearbook of Environmental and Resource Economics, 2000, 171-197 (1999) [124] Klein, S. J.; Whalley, S., Comparing the sustainability of US electricity options through multi-criteria decision analysis, Energy Policy, 79, 127-149 (2015) [125] Konidari, P.; Mavrakis, D., A multi-criteria evaluation method for climate change mitigation policy instruments, Energy Policy, 35, 12, 6235-6257 (2007) [126] Kontogianni, A.; Papageorgiou, E.; Salomatina, L.; Skourtos, M.; Zanou, B., Risks for the Black Sea marine environment as perceived by Ukrainian stakeholders: A fuzzy cognitive mapping application, Ocean & Coastal Management, 62, 34-42 (2012) [127] Kontogianni, A.; Tourkolias, C.; Papageorgiou, E. I., Revealing market adaptation to a low carbon transport economy: Tales of hydrogen futures as perceived by fuzzy cognitive mapping, International Journal of Hydrogen Energy, 38, 2, 709-722 (2013) [128] Kosko, B., Fuzzy cognitive maps, International Journal of Man-Machine Studies, 24, 1, 65-75 (1986) · Zbl 0593.68073 [129] Kottas, T. L.; Boutalis, Y. S.; Karlis, A. D., New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks, IEEE Transactions on Energy Conversion, 21, 3, 793-803 (2006) [130] Kratena, K.; Streicher, G., Macroeconomic input-output modellingStructures, functional forms and closure rules (2009), Austrian Institute of Economic Research, . International Input-Output Association Working Paper WPIOX, 09-009 [131] Krohling, R. A.; Campanharo, V. C., Fuzzy TOPSIS for group decision making: A case study for accidents with oil spill in the sea, Expert Systems with Applications, 38, 4, 4190-4197 (2011) [132] Kurosawa, A.; Yagita, H.; Zhou, W.; Tokimatsu, K.; Yanagisawa, Y., Analysis of carbon emission stabilization targets and adaptation by integrated assessment model, The Energy Journal, 20, 157-175 (1999) [133] Kyriakarakos, G.; Dounis, A. I.; Arvanitis, K. G.; Papadakis, G., A fuzzy cognitive maps – petri nets energy management system for autonomous polygeneration microgrids, Applied Soft Computing, 12, 12, 3785-3797 (2012) [134] Kyriakarakos, G.; Patlitzianas, K.; Damasiotis, M.; Papastefanakis, D., A fuzzy cognitive maps decision support system for renewables local planning, Renewable and Sustainable Energy Reviews, 39, 209-222 (2014) [135] Lai, X.; Ye, Z.; Xu, Z.; Holmes, M. H.; Lambright, W. H., Carbon capture and sequestration (CCS) technological innovation system in China: Structure, function evaluation and policy implication, Energy Policy, 50, 635-646 (2012) [136] Lai, Y. J.; Liu, T. Y.; Hwang, C. L., Topsis for MODM, European Journal of Operational Research, 76, 3, 486-500 (1994) · Zbl 0810.90078 [137] Lange, A.; Treich, N., Uncertainty, learning and ambiguity in economic models on climate policy: Some classical results and new directions, Climatic Change, 89, 1, 7-21 (2008) [138] Laurikka, H.; Springer, U., Risk and return of project-based climate change mitigation: A portfolio approach, Global Environmental Change, 13, 3, 207-217 (2003) [139] Le Téno, J. F.; Mareschal, B., An interval version of PROMETHEE for the comparison of building products’ design with ill-defined data on environmental quality, European Journal of Operational Research, 109, 2, 522-529 (1998) · Zbl 0937.90046 [140] Lejour, A.; Veenendaal, P.; Verweij, G.; van Leeuwen, N., WorldScan: A model for international economic policy analysis (No. 111) (2006), CPB Netherlands Bureau for Economic Policy Analysis [141] Lemoine, D. M.; Fuss, S.; Szolgayova, J.; Obersteiner, M.; Kammen, D. M., The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio, Climatic Change, 113, 2, 141-162 (2012) [142] Lintner, J., The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Stochastic Optimization Models in Finance, 131-155 (1975), Elsevier [143] Lintunen, J.; Uusivuori, J., On the economics of forests and climate change: Deriving optimal policies, Journal of Forest Economics, 24, 130-156 (2016) [144] Liu, L., Approximate portfolio analysis, European Journal of Operational Research, 119, 1, 35-49 (1999) · Zbl 0933.91013 [145] Liu, M.; Wu, F. F., Portfolio optimization in electricity markets, Electric Power Systems Research, 77, 8, 1000-1009 (2007) [146] Lopolito, A.; Nardone, G.; Prosperi, M.; Sisto, R.; Stasi, A., Modeling the bio-refinery industry in rural areas: A participatory approach for policy options comparison, Ecological Economics, 72, 18-27 (2011) [147] Loulou, R.; Remme, U.; Kanudia, A.; Lehtila, A.; Goldstein, G., Documentation for the TIMES Model Part II, (Proceedings of the energy technology systems analysis programme (ETSAP) (2005)) [148] Luo, C.; Wu, D., Environment and economic risk: An analysis of carbon emission market and portfolio management, Environmental Research, 149, 297-301 (2016) [149] Luthra, S.; Mangla, S. K.; Kharb, R. K., Sustainable assessment in energy planning and management in Indian perspective, Renewable and Sustainable Energy Reviews, 47, 58-73 (2015) [150] Madlener, R.; Antunes, C. H.; Dias, L. C., Assessing the performance of biogas plants with multi-criteria and data envelopment analysis, European Journal of Operational Research, 197, 3, 1084-1094 (2009) [151] Maimoun, M.; Madani, K.; Reinhart, D., Multi-level multi-criteria analysis of alternative fuels for waste collection vehicles in the United States, Science of the Total Environment, 550, 349-361 (2016) [152] Mallampalli, V. R.; Mavrommati, G.; Thompson, J.; Duveneck, M.; Meyer, S., Methods for translating narrative scenarios into quantitative assessments of land use change, Environmental Modelling & Software, 82, 7-20 (2016) [153] Manne, A. S.; Richels, R. G., MERGE: An integrated assessment model for global climate change, Energy and environment, 175-189 (2005), Springer · Zbl 1125.91409 [154] Marinoni, O.; Adkins, P.; Hajkowicz, S., Water planning in a changing climate: Joint application of cost utility analysis and modern portfolio theory, Environmental Modelling & Software, 26, 1, 18-29 (2011) [155] Markowitz, H., Portfolio selection, The Journal of Finance, 7, 1, 77-91 (1952) [156] Marrero, G. A.; Puch, L. A.; Ramos-Real, F. J., Mean-variance portfolio methods for energy policy risk management, International Review of Economics & Finance, 40, 246-264 (2015) [157] Marttunen, M.; Lienert, J.; Belton, V., Structuring problems for multi-criteria decision analysis in practice: A literature review of method combinations, European Journal of Operational Research, 263, 1, 1-17 (2017) · Zbl 1380.91063 [158] Masui, T.; Hanaoka, T.; Hikita, S.; Kainuma, M., Assessment of \(CO_3\) reductions and economic impacts considering energy-saving investments, The Energy Journal, 175-190 (2006) [159] Mattsson, N.; Wene, C. O., Assessing new energy technologies using an energy system model with endogenized experience curves, International Journal of Energy Research, 21, 4, 385-393 (1997) [160] Mavrotas, G.; Florios, K., An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact Pareto set in multi-objective integer programming problems, Applied Mathematics and Computation, 219, 18, 9652-9669 (2013) · Zbl 1290.90055 [161] Mavrotas, G.; Figueira, J. R.; Siskos, E., Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection, Omega, 52, 142-155 (2015) [162] McLohglin, E.; Bazilian, M., Application of portfolio analysis to the irish generating mix in 2020 (2006), Sustainable Energy Ireland (SEI) [163] Meliadou, A.; Santoro, F.; Nader, M. R.; Dagher, M. A.; Al Indary, S.; Salloum, B. A., Prioritising coastal zone management issues through fuzzy cognitive mapping approach, Journal of Environmental Management, 97, 56-68 (2012) [164] Mendelsohn, R., & Seo, S. N. (2007). Climate change adaptation in Africa: a microeconomic analysis of livestock choice. The World Bank.; Mendelsohn, R., & Seo, S. N. (2007). Climate change adaptation in Africa: a microeconomic analysis of livestock choice. The World Bank. [165] Messner, S., Endogenized technological learning in an energy systems model, Journal of Evolutionary Economics, 7, 3, 291-313 (1997) [166] Michailidou, A. V.; Vlachokostas, C.; Moussiopoulos, Ν., Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas, Tourism Management, 55, 1-12 (2016) [167] Miettinen, P.; Hämäläinen, R. P., How to benefit from decision analysis in environmental life cycle assessment (LCA), European Journal of Operational Research, 102, 2, 279-294 (1997) · Zbl 0958.91514 [168] Miller, K. A.; Belton, V., Water resource management and climate change adaptation: A holistic and multiple criteria perspective, Mitigation and Adaptation Strategies for Global Change, 19, 3, 289-308 (2014) [169] Ministry of the Environment and Energy (2017). 4th National Energy Efficiency Action Plan of Greece. Available at: https://ec.europa.eu/energy/sites/ener/files/documents/el_neeap_2017_en.pdf; Ministry of the Environment and Energy (2017). 4th National Energy Efficiency Action Plan of Greece. Available at: https://ec.europa.eu/energy/sites/ener/files/documents/el_neeap_2017_en.pdf [170] Mitter, H.; Heumesser, C.; Schmid, E., Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change, Land Use Policy, 46, 75-90 (2015) [171] Moallemi, E. A.; de Haan, F. J.; Webb, J. M.; George, B. A.; Aye, L., Transition dynamics in state-influenced niche empowerments: Experiences from India’s electricity sector, Technological Forecasting and Social Change, 116, 129-141 (2017) [172] Mohamadabadi, H. S.; Tichkowsky, G.; Kumar, A., Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles, Energy, 34, 1, 112-125 (2009) [173] Montanari, R., Environmental efficiency analysis for enel thermo-power plants, Journal of Cleaner Production, 12, 4, 403-414 (2004) [174] Mourhir, A.; Rachidi, T.; Papageorgiou, E. I.; Karim, M.; Alaoui, F. S., A cognitive map framework to support integrated environmental assessment, Environmental Modelling & Software, 77, 81-94 (2016) [175] Munda, G., Multiple criteria decision analysis and sustainable development, Multiple criteria decision analysis: State of the art surveys, 953-986 (2005), Springer: Springer New York · Zbl 1072.90542 [176] Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M., Evaluating energy efficiency policies with energy-economy models, Annual Review of Environment and Resources, 35, 305-344 (2010) [177] Muñoz, J. I.; de la Nieta, A. A.S.; Contreras, J.; Bernal-Agustín, J. L., Optimal investment portfolio in renewable energy: The Spanish case, Energy Policy, 37, 12, 5273-5284 (2009) [178] Narita, D.; Klepper, G., Economic incentives for carbon dioxide storage under uncertainty: A real options analysis, International Journal of Greenhouse Gas Control, 53, 18-27 (2016) [179] Natarajan, R.; Subramanian, J.; Papageorgiou, E. I., Hybrid learning of fuzzy cognitive maps for sugarcane yield classification, Computers and Electronics in Agriculture, 127, 147-157 (2016) [180] Nazari, M. S.; Maybee, B.; Whale, J.; McHugh, A., Climate policy uncertainty and power generation investments: A real options-CVaR portfolio optimization approach, Energy Procedia, 75, 2649-2657 (2015) [181] Neves, L. P.; Martins, A. G.; Antunes, C. H.; Dias, L. C., A multi-criteria decision approach to sorting actions for promoting energy efficiency, Energy Policy, 36, 7, 2351-2363 (2008) [182] Nikas, A.; Gkonis, N.; Forouli, A.; Siskos, E.; Arsenopoulos, A.; Papapostolou, A., Greece: From near-term actions to long-term pathways: Risks and uncertainties associated with the national energy efficiency framework, (Hanger-Kopp, S.; Lieu, J.; Nikas, A., Narratives of low-carbon transitions: Understanding risks and uncertainties (2019), Routledge: Routledge Abingdon) [183] Nikas, A.; Doukas, H., Developing robust climate policies: A fuzzy cognitive map approach, Robustness analysis in decision aiding, optimization, and analytics, 239-263 (2016), Springer International Publishing [184] Nikas, A.; Doukas, H.; Lieu, J.; Alvarez Tinoco, R.; Charisopoulos, V.; Charisopoulos, V., Managing stakeholder knowledge for the evaluation of innovation systems in the face of climate change, Journal of Knowledge Management, 21, 5, 1013-1034 (2017) [185] Nikas, A.; Ntanos, E.; Doukas, H., A semi-quantitative modelling application for assessing energy efficiency strategies, Applied Soft Computing, 76, 140-155 (2019) [186] Nikas, A.; Stavrakas, V.; Arsenopoulos, A.; Doukas, H.; Antosiewicz, M.; Witajewski-Baltvilks, J., Barriers to and consequences of a solar-based energy transition in Greece, Environmental Innovation and Societal Transitions (2019), in press [187] Nordhaus, W. D., Managing the global commons: The economics of climate change, Vol. 31 (1994), MIT press: MIT press Cambridge, MA [188] Nordhaus, W. D., A question of balance: Weighing the options on global warming policies (2008), Yale University Press [189] O’Neill, B. C.; Kriegler, E.; Ebi, K. L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D. S., The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environmental Change, 42, 169-180 (2017) [190] O’Neill, B. C.; Kriegler, E.; Riahi, K.; Ebi, K. L.; Hallegatte, S.; Carter, T. R., A new scenario framework for climate change research: The concept of shared socioeconomic pathways, Climatic Change, 122, 3, 387-400 (2014) [191] Oda, J.; Akimoto, K., An analysis of CCS investment under uncertainty, Energy Procedia, 4, 1997-2004 (2011) [192] Olazabal, M.; Pascual, U., Use of fuzzy cognitive maps to study urban resilience and transformation, Environmental Innovation and Societal Transitions, 18, 18-40 (2016) [193] Oliveira, C.; Antunes, C. H., A multiple objective model to deal with economy – energy – environment interactions, European Journal of Operational Research, 153, 2, 370-385 (2004) · Zbl 1137.90657 [194] Onar, S. C.; Oztaysi, B.; Otay, İ.; Kahraman, C., Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets, Energy, 90, 274-285 (2015) [195] Onu, P. U.; Quan, X.; Xu, L.; Orji, J.; Onu, E., Evaluation of sustainable acid rain control options utilizing a fuzzy TOPSIS multi-criteria decision analysis model frame work, Journal of Cleaner Production, 141, 612-625 (2017) [196] Opricovic, S.; Tzeng, G. H., Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156, 2, 445-455 (2004) · Zbl 1056.90090 [197] Ortiz, R.; Markandya, A., Literature review of integrated impact assessment models of climate change with emphasis on damage functions (2010), BC3: BC3 Barcelona, Spain, Working paper series 2009-06 [198] Ortolani, L.; McRoberts, N.; Dendoncker, N.; Rounsevell, M., Analysis of farmers’ concepts of environmental management measures: An application of cognitive maps and cluster analysis in pursuit of modelling agents’ behaviour, Fuzzy cognitive maps, 363-381 (2010), Springer: Springer Berlin Heidelberg [199] Özesmi, U. (2006a). Ecosystems in the mind: Fuzzy cognitive maps of the Kizilirmak Delta Wetlands in Turkey. arXiv preprint q-bio/0603022.; Özesmi, U. (2006a). Ecosystems in the mind: Fuzzy cognitive maps of the Kizilirmak Delta Wetlands in Turkey. arXiv preprint q-bio/0603022. [200] Özesmi, U. (2006b). Fuzzy cognitive maps of local people impacted by dam construction: Their demands regarding resettlement. arXiv preprint q-bio/0601032.; Özesmi, U. (2006b). Fuzzy cognitive maps of local people impacted by dam construction: Their demands regarding resettlement. arXiv preprint q-bio/0601032. [201] Özesmi, U.; Özesmi, S., A participatory approach to ecosystem conservation: Fuzzy cognitive maps and stakeholder group analysis in Uluabat Lake, Turkey, Environmental Management, 31, 4, 518-531 (2003) [202] Papadopoulos, A.; Karagiannidis, A., Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems, Omega, 36, 5, 766-776 (2008) [203] Papageorgiou, E. I.; Markinos, A. T.; Gemtos, T. A., Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application, Applied Soft Computing, 11, 4, 3643-3657 (2011) [204] Papageorgiou, E.; Kontogianni, A., Using fuzzy cognitive mapping in environmental decision making and management: A methodological primer and an application (2012), INTECH Open Access Publisher [205] Parrado, R.; De Cian, E., Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework, Energy Economics, 41, 76-89 (2014) [206] Parson, E. A.; Fisher-Vanden, A. K., Integrated assessment models of global climate change, Annual Review of Energy and the Environment, 22, 1, 589-628 (1997) [207] Paul, S.; Sarkar, B.; Bose, P. K., Eclectic decision for the selection of tree borne oil (TBO) as alternative fuel for internal combustion engine, Renewable and Sustainable Energy Reviews, 48, 256-263 (2015) [208] Peng, Z.; Wu, L.; Chen, Z., Research on steady states of fuzzy cognitive map and its application in three-rivers ecosystem, Sustainability, 8, 1, 40 (2016) [209] Perkoulidis, G.; Papageorgiou, A.; Karagiannidis, A.; Kalogirou, S., Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives, Waste Management, 30, 7, 1395-1406 (2010) [210] Phillips, L. D.; Bana e. Costa, C. A., Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing, Annals of Operations Research, 154, 1, 51-68 (2007) · Zbl 1157.90457 [211] Pilavachi, P. A.; Stephanidis, S. D.; Pappas, V. A.; Afgan, N. H., Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies, Applied Thermal Engineering, 29, 11, 2228-2234 (2009) [212] Promentilla, M. A.B.; Aviso, K. B.; Tan, R. R., A group fuzzy analytic network process to prioritize low carbon energy systems in the Philippines, Energy Procedia, 61, 808-811 (2014) [213] Pugh, G.; Clarke, L.; Marlay, R.; Kyle, P.; Wise, M.; McJeon, H., Energy R&D portfolio analysis based on climate change mitigation, Energy Economics, 33, 4, 634-643 (2011) [214] Rajaram, T.; Das, A., Modeling of interactions among sustainability components of an agro-ecosystem using local knowledge through cognitive mapping and fuzzy inference system, Expert Systems with Applications, 37, 2, 1734-1744 (2010) [215] Ramazankhani, M. E.; Mostafaeipour, A.; Hosseininasab, H.; Fakhrzad, M. B., Feasibility of geothermal power assisted hydrogen production in Iran, International Journal of Hydrogen Energy, 41, 41, 18351-18369 (2016) [216] Rana, A.; Morita, T., Scenarios for greenhouse gas emission mitigation: A review of modeling of strategies and policies in integrated assessment models, Environmental Economics and Policy Studies, 3, 2, 267-289 (2000) [217] Reckien, D., Weather extremes and street life in India—Implications of Fuzzy Cognitive Mapping as a new tool for semi-quantitative impact assessment and ranking of adaptation measures, Global Environmental Change, 26, 1-13 (2014) [218] Ren, J.; Lützen, M., Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties, Transportation Research Part D: Transport and Environment, 40, 43-60 (2015) [219] Ribeiro, F.; Ferreira, P.; Araújo, M., Evaluating future scenarios for the power generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese case, Energy, 52, 126-136 (2013) [220] Rojas-Zerpa, J. C.; Yusta, J. M., Application of multicriteria decision methods for electric supply planning in rural and remote areas, Renewable and Sustainable Energy Reviews, 52, 557-571 (2015) [221] Romejko, K.; Nakano, M., Portfolio analysis of alternative fuel vehicles considering technological advancement, energy security and policy, Journal of Cleaner Production, 142, 39-49 (2017) [222] Roques, F. A.; Newbery, D. M.; Nuttall, W. J., Fuel mix diversification incentives in liberalized electricity markets: A mean – variance portfolio theory approach, Energy Economics, 30, 4, 1831-1849 (2008) [223] Roth, S.; Hirschberg, S.; Bauer, C.; Burgherr, P.; Dones, R.; Heck, T., Sustainability of electricity supply technology portfolio, Annals of Nuclear Energy, 36, 3, 409-416 (2009) [224] Roy, B., Méthodologie multicritère d” aide à la décision (1985), Economica: Economica Paris [225] Roy, B., Decision-aid and decision-making, European Journal of Operational Research, 45, 2-3, 324-331 (1990) [226] Roy, B.; Vanderpooten, D., An overview on “The European school of MCDA: Emergence, basic features and current works”, European Journal of Operational Research, 99, 1, 26-27 (1997) · Zbl 0953.90536 [227] Roy, B.; Présent, D. M.; Silhol, D., A programming method for determining which Paris metro stations should be renovated, European Journal of Operational Research, 24, 2, 318-334 (1986) [228] Røyne, F.; Penaloza, D.; Sandin, G.; Berlin, J.; Svanström, M., Climate impact assessment in life cycle assessments of forest products: Implications of method choice for results and decision-making, Journal of Cleaner Production, 116, 90-99 (2016) [229] Saaty, T. L., How to make a decision: The analytic hierarchy process, European Journal of Operational Research, 48, 1, 9-26 (1990) · Zbl 0707.90002 [230] Sacchelli, S., Social acceptance optimization of biomass plants: A fuzzy cognitive map and evolutionary algorithm application, Chemical Engineering, 37, 181-186 (2014) [231] Sadeghi, A.; Larimian, T.; Molabashi, A., Evaluation of renewable energy sources for generating electricity in province of Yazd: A fuzzy MCDM approach, Procedia-Social and Behavioral Sciences, 62, 1095-1099 (2012) [232] Sakthivel, G.; Ilangkumaran, M.; Gaikwad, A., A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis, Ain Shams Engineering Journal, 6, 1, 239-256 (2015) [233] Samarasinghe, S.; Strickert, G., Mixed-method integration and advances in fuzzy cognitive maps for computational policy simulations for natural hazard mitigation, Environmental Modelling & Software, 39, 188-200 (2013) [234] Sano, F.; Akimoto, K.; Homma, T.; Tomoda, T., Analysis of technological portfolios for \(CO_2\) stabilizations and effects of technological changes, The Energy Journal, 27, 141-161 (2006) [235] Santos-Alamillos, F. J.; Thomaidis, N. S.; Usaola-García, J.; Ruiz-Arias, J. A.; Pozo-Vázquez, D., Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain, Renewable Energy, 106, 335-342 (2017) [236] Schneider, S. H., Integrated assessment modeling of global climate change: Transparent rational tool for policy making or opaque screen hiding value‐laden assumptions?, Environmental Modeling and Assessment, 2, 4, 229-249 (1997) [237] Schwanitz, V. J., Evaluating integrated assessment models of global climate change, Environmental Modelling & Software, 50, 120-131 (2013) [238] Scrieciu, S.Ş.; Chalabi, Z., Climate policy planning and development impact assessment, Mitigation and Adaptation Strategies for Global Change, 19, 3, 255-260 (2014) [239] Scrieciu, S.Ş.; Belton, V.; Chalabi, Z.; Mechler, R.; Puig, D., Advancing methodological thinking and practice for development-compatible climate policy planning, Mitigation and Adaptation Strategies for Global Change, 19, 3, 261-288 (2014) [240] Şengül, Ü.; Eren, M.; Shiraz, S. E.; Gezder, V.; Şengül, A. B., Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey, Renewable Energy, 75, 617-625 (2015) [241] Shahnazari, M.; McHugh, A.; Maybee, B.; Whale, J., Overlapping carbon pricing and renewable support schemes under political uncertainty: Global lessons from an Australian case study, Applied Energy, 200, 237-248 (2017) [242] Shakouri, M.; Lee, H. W.; Choi, K., PACPIM: New decision-support model of optimized portfolio analysis for community-based photovoltaic investment, Applied Energy, 156, 607-617 (2015) [243] Sharpe, W. F., Capital asset prices: A theory of market equilibrium under conditions of risk, The Journal of Finance, 19, 3, 425-442 (1964) [244] Shiau, T. A.; Liu, J. S., Developing an indicator system for local governments to evaluate transport sustainability strategies, Ecological Indicators, 34, 361-371 (2013) [245] Shmelev, S. E.; van den Bergh, J. C., Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK, Renewable and Sustainable Energy Reviews, 60, 679-691 (2016) [246] Shreve, C. M.; Kelman, I., Does mitigation save? Reviewing cost-benefit analyses of disaster risk reduction, International Journal of Disaster Risk Reduction, 10, 213-235 (2014) [247] Siddiqui, A. S.; Tanaka, M.; Chen, Y., Are targets for renewable portfolio standards too low? The impact of market structure on energy policy, European Journal of Operational Research, 250, 1, 328-341 (2016) · Zbl 1346.91185 [249] Siskos, E.; Tsotsolas, N., Elicitation of criteria importance weights through the Simos method: A robustness concern, European Journal of Operational Research, 246, 2, 543-553 (2015) · Zbl 1346.90446 [250] Siskos, Y.; Grigoroudis, E.; Matsatsinis, N. F., UTA methods, Multiple criteria decision analysis: State of the art surveys, 297-334 (2005), Springer: Springer New York · Zbl 1072.90547 [251] Soderholm, P., Modelling the economic costs of climate policy (2007), Lulea University of Technology [252] Soler, L. S.; Kok, K.; Camara, G.; Veldkamp, A., Using fuzzy cognitive maps to describe current system dynamics and develop land cover scenarios: A case study in the Brazilian Amazon, Journal of Land Use Science, 7, 2, 149-175 (2012) [253] Springer, U., Can the risks of the Kyoto mechanisms be reduced through Portfolio diversification? Evidence from the Swedish AIJ Program, Environmental and Resource Economics, 25, 4, 501-513 (2003) [254] Stach, W.; Kurgan, L.; Pedrycz, W., Expert-based and computational methods for developing fuzzy cognitive maps, Fuzzy cognitive maps, 23-41 (2010), Springer: Springer Berlin Heidelberg [255] Stamford, L.; Azapagic, A., Life cycle sustainability assessment of UK electricity scenarios to 2070, Energy for Sustainable Development, 23, 194-211 (2014) [256] Stanton, E.; Ackerman, F.; Kartha, S., Inside the integrated assessment models: Four issues in climate economics, Climate and Development, 1, 2, 166-184 (2009) [257] Stern, N. H., The economics of climate change: The stern review (2007), Cambridge University Press [258] Streimikiene, D.; Baležentis, T., Multi-criteria assessment of small scale CHP technologies in buildings, Renewable and Sustainable Energy Reviews, 26, 183-189 (2013) [259] Streimikiene, D.; Baležentis, T., Multi-objective ranking of climate change mitigation policies and measures in Lithuania, Renewable and Sustainable Energy Reviews, 18, 144-153 (2013) [260] Streimikiene, D.; Baležentis, T.; Krisciukaitienė, I.; Balezentis, A., Prioritizing sustainable electricity production technologies: MCDM approach, Renewable and Sustainable Energy Reviews, 16, 5, 3302-3311 (2012) [261] Štreimikienė, D.; Šliogerienė, J.; Turskis, Z., Multi-criteria analysis of electricity generation technologies in Lithuania, Renewable Energy, 85, 148-156 (2016) [262] Talaei, A.; Ahadi, M. S.; Maghsoudy, S., Climate friendly technology transfer in the energy sector: A case study of Iran, Energy Policy, 64, 349-363 (2014) [263] Theodorou, S.; Florides, G.; Tassou, S., The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus: A review, Energy Policy, 38, 12, 7783-7792 (2010) [264] Tol, R. S., On the optimal control of carbon dioxide emissions: An application of FUND, Environmental Modeling and Assessment, 2, 3, 151-163 (1997) [265] Tol, R. S., A cost – benefit analysis of the EU 20/20/2020 package, Energy Policy, 49, 288-295 (2012) [266] Torani, K.; Rausser, G.; Zilberman, D., Innovation subsidies versus consumer subsidies: A real options analysis of solar energy, Energy Policy, 92, 255-269 (2016) [267] Tsai, W. H.; Yang, C. H.; Chang, J. C.; Lee, H. L., An activity-based costing decision model for life cycle assessment in green building projects, European Journal of Operational Research, 238, 2, 607-619 (2014) · Zbl 1338.90499 [269] Ulutaş, B. H., Determination of the appropriate energy policy for Turkey, Energy, 30, 7, 1146-1161 (2005) [270] Vahabzadeh, A. H.; Asiaei, A.; Zailani, S., Green decision-making model in reverse logistics using FUZZY-VIKOR method, Resources, Conservation and Recycling, 103, 125-138 (2015) [271] Vaillancourt, K.; Waaub, J. P., Equity in international greenhouse gases abatement scenarios: A multicriteria approach, European Journal of Operational Research, 153, 2, 489-505 (2004) · Zbl 1137.90566 [272] Van Asseldonk, M. A.; Langeveld, J. W.A., Coping with climate change in agriculture: A portfolio analysis. 101st Seminar of European Association of Agricultural Economists, Berlin (2007), Germany: Germany EAAE [273] Van den Bergh, J. C., Optimal climate policy is a utopia: From quantitative to qualitative cost-benefit analysis, Ecological Economics, 48, 4, 385-393 (2004) [274] Van den Bergh, J. C.J. M.; Botzen, W. J.W., Monetary valuation of the social cost of \(CO_2\) emissions: A critical survey, Ecological Economics, 114, 33-46 (2015) [275] van Vliet, M.; Kok, K.; Veldkamp, T., Linking stakeholders and modellers in scenario studies: The use of fuzzy cognitive maps as a communication and learning tool, Futures, 42, 1, 1-14 (2010) [276] Vanwindekens, F. M.; Stilmant, D.; Baret, P. V., Development of a broadened cognitive mapping approach for analysing systems of practices in social – ecological systems, Ecological Modelling, 250, 352-362 (2013) [277] Vasslides, J. M.; Jensen, O. P., Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders, Journal of Environmental Management, 166, 348-356 (2016) [278] Voinov, A.; Bousquet, F., Modelling with stakeholders, Environmental Modelling & Software, 25, 11, 1268-1281 (2010) [279] Volkart, K.; Bauer, C.; Burgherr, P.; Hirschberg, S.; Schenler, W.; Spada, M., Interdisciplinary assessment of renewable, nuclear and fossil power generation with and without carbon capture and storage in view of the new Swiss energy policy, International Journal of Greenhouse Gas Control, 54, 1-14 (2016) [280] Vörös, J., Portfolio analysis—An analytic derivation of the efficient portfolio frontier, European Journal of Operational Research, 23, 3, 294-300 (1986) · Zbl 0582.90006 [281] Watkiss, P.; Downing, T.; Dyszynski, J., AdaptCost project: Analysis of the economic costs of climate change adaptation in Africa (2010), UNEP: UNEP Nairobi [282] Wei, Y. M.; Mi, Z. F.; Huang, Z., Climate policy modeling: An online SCI-E and SSCI based literature review, Omega, 57, 70-84 (2015) [283] Westner, G.; Madlener, R., The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis, Energy Policy, 38, 12, 7911-7920 (2010) [284] White, B., A mean-variance portfolio optimization of California’s generation mix to 2020: Achieving California’s 33 percent renewable portfolio standard goal. Draft Consultant Report (2007), California Energy Commission [285] Wildenberg, M.; Bachhofer, M.; Adamescu, M.; De Blust, G.; Diaz-Delgadod, R.; Isak, K., Linking thoughts to flows-fuzzy cognitive mapping as tool for integrated landscape modelling, (Proceedings of the 2010 international conference on integrative landscape modeling: Linking environmental, social and computer science, Vol. 3 (2010)), 5 [286] Worrell, E.; Ramesohl, S.; Boyd, G., Advances in energy forecasting models based on engineering economics, Annual Review of Environment and Resources, 29, 345-381 (2004) [287] Xu, B.; Nayak, A.; Gray, D.; Ouenniche, J., Assessing energy business cases implemented in the North Sea Region and strategy recommendations, Applied Energy, 172, 360-371 (2016) [288] Yap, H. Y.; Nixon, J. D., A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK, Waste Management, 46, 265-277 (2015) [289] Zhang, H.; Song, J.; Su, C.; He, M., Human attitudes in environmental management: Fuzzy cognitive maps and policy option simulations analysis for a coal-mine ecosystem in China, Journal of Environmental Management, 115, 227-234 (2013) [290] Zhao, Z. Y.; Zhu, J.; Zuo, J., Sustainable development of the wind power industry in a complex environment: A flexibility study, Energy Policy, 75, 392-397 (2014) [291] Zhou, W.; Zhu, B.; Fuss, S.; Szolgayová, J.; Obersteiner, M.; Fei, W., Uncertainty modeling of CCS investment strategy in China’s power sector, Applied Energy, 87, 7, 2392-2400 (2010) [292] Zhu, L.; Fan, Y., Optimization of China’s generating portfolio and policy implications based on portfolio theory, Energy, 35, 3, 1391-1402 (2010) [293] Zhu, L.; Fan, Y., A real options-based CCS investment evaluation model: Case study of China’s power generation sector, Applied Energy, 88, 12, 4320-4333 (2011) [294] Ziegler, D.; Schmitz, K.; Weber, C., Optimal electricity generation portfolios, Computational Management Science, 9, 3, 381-399 (2012) · Zbl 1273.91460 [295] Zon, A. V.; Fuss, S., Irreversible investment under uncertainty in electricity generation: A clay – clay-vintage portfolio approach with an application to climate change policy in the UK (No. 035) (2006), United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.