×

Measuring the ability of transitive reasoning, using product and strategy information. (English) Zbl 1306.62386

Summary: Cognitive theories disagree about the processes and the number of abilities involved in transitive reasoning. This led to controversies about the influence of task characteristics on individuals’ performance and the development of transitive reasoning. In this study, a computer test was constructed containing 16 transitive reasoning tasks having different characteristics with respect to presentation form, task format, and task content. Both product and strategy information were analyzed to measure the performance of 6- to 13-year-old children. Three methods (MSP, DETECT, and Improved DIMTEST) were used to determine the number of abilities involved and to test the assumptions imposed on the data by item response models. Nonparametric IRT models were used to construct a scale for transitive reasoning. Multiple regression was used to determine the influence of task characteristics on the difficulty level of the tasks. It was concluded that: (1) the qualitatively distinct abilities predicted by Piaget’s theory could not be distinguished by means of different dimensions in the data structure; (2) transitive reasoning could be described by one ability, and some task characteristics influenced the difficulty of a task; and (3) strategy information provided a stronger scale than product information.

MSC:

62P15 Applications of statistics to psychology

Software:

DIMTEST; MSP5
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bouwmeester, S., & Aalbers, T. (2002).Tranred. Tilburg: Tilburg University.
[2] Bouwmeester, S., Sijtsma, K., & Vermunt, J.K. (2004). Latent class regression analysis to describe cognitive developmental phenomena: an application to transitive reasoning.European Journal of Developmental Psychology, 1, 67–86. · doi:10.1080/17405620344000031
[3] Braine, M.D.S. (1959). The onthogeny of certain logical operations: Piaget’s formulation examined by nonverbal methods.Monographs for the Society for Research in Child Development, 27, 41–63. · doi:10.2307/1165530
[4] Brainerd, C.J. (1977). Response criteria in concept development research.Child Development, 48, 360–366. · doi:10.2307/1128628
[5] Brainerd, C.J., & Kingma, J. (1984). Do children have to remember to reason? A fuzzy-trace theory of transitivity development.Developmental Review, 4, 311–377. · doi:10.1016/0273-2297(84)90021-2
[6] Brainerd, C.J., & Kingma, J. (1985). On the independence of short-term memory and working memory in cognitive development.Cognitive Psychology, 17, 210–247. · doi:10.1016/0010-0285(85)90008-8
[7] Brainerd, C.J., & Reyna, V.F. (1992). The memory independence effect: What do the data show? What do the theories claim?Developmental Review, 12, 164–186. · doi:10.1016/0273-2297(92)90007-O
[8] Bryant, P.E., & Trabasso, T. (1971). Transitive inferences and memory in young children.Nature, 232, 456–458. · doi:10.1038/232456a0
[9] Chapman, M., & Lindenberger, U. (1988). Functions, operations, and decalage in the development of transitivity.Developmental Psychology, 24, 542–551. · doi:10.1037/0012-1649.24.4.542
[10] Chapman, M., & Lindenberger, U. (1992). Transitivity judgments, memory for premises, and models of children’s reasoning.Developmental Review, 12, 124–163. · doi:10.1016/0273-2297(92)90006-N
[11] Clark, H.H. (1969). Linguistic processes in deductive reasoning.Journal of Educational Psychology, 76, 387–404.
[12] DeSoto, C.B., London, M., & Handel, S. (1965). Social reasoning and spatial paralogic.Journal of Social Psychology, 2, 513–521.
[13] Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research.Acta Psychologica, 37, 359–374. · doi:10.1016/0001-6918(73)90003-6
[14] Fischer, G.H. (1995). The linear logistic test model. In G.H. Fischer and I.W. Molenaar (Eds.),Rasch Models, Foundations, Recent Developments, and Applications (pp. 131–155). New York: Springer-Verlag. · Zbl 0831.62087
[15] Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio.Psychometrika, 53, 383–392. · Zbl 0718.62147 · doi:10.1007/BF02294219
[16] Green, K.E., & Smith, R.M. (1987). A comparison of two methods of decomposing item difficulties.Journal of Educational Statistics, 12, 369–381. · doi:10.2307/1165055
[17] Hatti, J., Krakowski, K., Rogers, H.J., & Swaminathan, H. (1996). An assessment of Stout’s index of essential unidimmensionality.Applied Psychological Measurement, 20, 1–14. · doi:10.1177/014662169602000101
[18] Hemker, B.T., Sijtsma, K., & Molenaar, I.W. (1995). Selection of unidimensional scales from a multidimensional item bank in the polytomous Mokken IRT model.Applied Psychological Measurement, 19, 337–352. · doi:10.1177/014662169501900404
[19] Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sumscore in polytomous IRT models.Psychometrika, 62, 331–348. · Zbl 0887.62115 · doi:10.1007/BF02294555
[20] Hosenfield, B., Van der Maas, H. L.J., & van den Boom, D.C. (1997). Detecting bimodality in the analogical reasoning performance of elementary schoolchildren.International Journal of Behavioral Development, 20, 529–547. · doi:10.1080/016502597385261
[21] Huttenlocher, J. (1968). Constructing spatial images.Psychological Review, 75, 550–560. · doi:10.1037/h0026748
[22] Huttenlocher, J., & Higgens, E.T. (1971). Adjectives, comparatives and syllogisms.Psychological Review, 78, 487–504. · doi:10.1037/h0031858
[23] Junker, B.W. (1993). Conditional association, essential independence, and monotone unidimensional item response models.The Annals of Statistics, 21, 1359–1378. · Zbl 0791.62099 · doi:10.1214/aos/1176349262
[24] Kelderman, H., & Rijkes, C. P.M. (1994). Loglinear multidimensional IRT models for polytomously scores items.Psychometrika, 59, 149–176. · Zbl 0825.62936 · doi:10.1007/BF02295181
[25] McDonald, R.P. (1985). Linear versus nonlinear models in item response theory.Applied Psychological Measurement, 6, 379–396. · doi:10.1177/014662168200600402
[26] Mokken, R.J. (1971).A Theory and Procedure of Scale Analysis. The Hague: Mouton.
[27] Mokken, R.J., Lewis, C., & Sijtsma, K. (1986). Rejoinder to ”the Mokken scale: A critical discussion.”Applied Psychological Measurement, 10, 279–285. · doi:10.1177/014662168601000306
[28] Molenaar, I.W., & Sijtsma, K. (2000).User’s manual MSP5 for Windows. A program for Mokken Scale analysis for Polytomous items [software manual]. Groningen, The Netherlands: iecProGamma.
[29] Murray, J.P., & Youniss, J. (1968). Achievement of inferential transitivity and its relation to serial ordering.Child Development, 39, 1259–1268. · doi:10.2307/1127291
[30] Nandakumar, R., & Stout, W. (1993). Refinements of Stout’s procedure for assessing latent trait unidimensionality.Journal of Educational Statistics, 18, 41–68. · doi:10.2307/1165182
[31] Nandakumar, R., Yu, F., Li, H.H., & Stout, W. (1998). Assessing unidimensionality of polytomous data.Applied Psychological Measurement, 22, 99–115. · doi:10.1177/01466216980222001
[32] Piaget, J. (1961).Les Méchanicismes Perceptives. Paris: Presses Universitaires de France.
[33] Piaget, J., & Inhelder, B. (1941).Le Développement des Quantités Chez l’Enfant. Neuchatel: Delachaux et Niestlé.
[34] Piaget, J., Inhelder, B., & Szeminska, A. (1948).La Géométric Spontanée de l’Enfant. Paris: Presses Universitaires de France.
[35] Piaget, J., & Szeminska, A. (1941).La Genèse du Nombre Chez l’Enfant. Neuchatel: Delachaux et Niestlé.
[36] Quinton, G., & Fellows, B. (1975). ”Perceptual” strategies in the solving of three-term series problems.British Journal of Psychology, 66, 69–78. · doi:10.1111/j.2044-8295.1975.tb01441.x
[37] Reckase, M.A. (1997). A linear logistic multidimensional model for dichotomous item response data. In W.J. van der Linden, & R.K. Hambleton (Eds.),Handbook of Modern Item Response Theory (pp. 271–286). New York: Springer-Verlag.
[38] Reyna, V.F., & Brainerd, C.J. (1990). Fuzzy processing in transitivity development.Annals of Operations Research, 23, 37–63. · doi:10.1007/BF02204838
[39] Roussos, L.A., Stout, W., & Marden, J. (1998). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality.Journal of Educational Measurement, 35, 1–30. · doi:10.1111/j.1745-3984.1998.tb00525.x
[40] Scheiblechner, H. (1972). Das lernen un lösen complexer Denkaufgaben (Learning and solving complex thought problems).Zeitschrift für experimentelle und angewandte Psychologie, 19, 481–520.
[41] Sijtsma, K., & Meijer, R.R. (1992). A method for investigating the intersection of item response functions in Mokken’s nonparametric IRT model.Applied Psychological Measurement, 16, 149–157. · doi:10.1177/014662169201600204
[42] Sijtsma, K., & Molenaar, I.W. (2002).Introduction to Nonparametric Item Response Theory. Thousand Oaks, CA: Sage Publications. · Zbl 1004.91070
[43] Smedslund, J. (1963). Development of concrete transitivity of length in children.Child Development, 34, 389–405.
[44] Smedslund, J. (1969). Psychological diagnostics.Psychological Bulletin, 71, 237–248. · doi:10.1037/h0026953
[45] Sternberg, R.J. (1980a). Representation and process in linear syllogistic reasoning.Journal of Experimental Psychology, 109, 119–159. · doi:10.1037/0096-3445.109.2.119
[46] Sternberg, R.J. (1980b). The development of linear syllogistic reasoning.Journal of Experimental Child Psychology, 29, 340–356. · doi:10.1016/0022-0965(80)90025-9
[47] Sternberg, R.J., & Weil, E.M. (1980). An aptitude {\(\times\)} strategy interaction in linear syllogistic reasoning.Journal of Educational Psychology, 72, 226–239. · doi:10.1037/0022-0663.72.2.226
[48] Stout, W. (1993).DIMTEST. Urbana-Champaign, IL: The William Stout Institute for Measurement.
[49] Stout, W. (1996).DETECT. Urbana-Champaign, IL: The William Stout Institute for Measurement.
[50] Stout, W., Froelich, A.G., & Gao, F. (2001). Using resampling methods to produce an improved DIMTEST procedure. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.),Essays on Item Response Theory (pp. 357–375). New York: Springer. · Zbl 1021.62099
[51] Stout, W., Habing, B., Douglas, J., Kim, H.R., Roussos, L.A., & Zhang, J. (1996). Conditional covariance-based non-parametric multidimensionality assessment.Applied Psychological Measurement, 20, 331–354. · doi:10.1177/014662169602000403
[52] Thomas, H., Lohaus, A., & Kessler, T. (1999). Stability and change in longitudinal water-level task performance.Developmental Psychology, 35, 1024–1037. · doi:10.1037/0012-1649.35.4.1024
[53] Trabasso, T. (1977). The role of memory as a system in making transitive inferences. In R.V. Kail, J.W. Hagen, & J.M. Belmont (Eds.),Perspectives on the Development of Memory and Cognition (pp. 333–366). Hillsdale, NJ: Erlbaum.
[54] Trabasso, T., Riley, C.A., & Wilson, E.G. (1975). The representation of linear order and spatial strategies in reasoning: a developmental study. In R.J. Falmagne (Ed.),Reasoning: Representation and Process in Children and Adults (pp. 201–229). Hillsdale, NJ: Erlbaum.
[55] Van Abswoude, A. A.H., Van der Ark, L.A., & Sijtsma, K. (2004). A comparative study on test dimensionality assessment procedures under nonparametric IRT models.Applied Psychological Measurement, 28, 3–24. · doi:10.1177/0146621603259277
[56] Verweij, A.C. (1999).Scaling transitive inference in 7–12 years old children. Unpublished doctoral dissertation, Vrÿe Universiteit Amsterdam, the Netherlands.
[57] Verweij, A.C., Sijtsma, K., & Koops, W. (1999). An ordinal scale for transitive reasoning by means of a deductive strategy.International Journal of Behavioral Development, 23, 241–264. · doi:10.1080/016502599384099
[58] Wright, B.C. (2001). Reconceptualizing the transitive inference ability: A framework for existing and future research.Developmental Review, 21, 375–422. · doi:10.1006/drev.2000.0525
[59] Zhang, J., & Stout, W. (1999a). Conditional covariance structure of generalized compensatory multidimensional items.Psychometrika, 64, 129–152. · Zbl 1291.62253 · doi:10.1007/BF02294532
[60] Zhang, J., & Stout, W. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure.Psychometrika, 64, 213–249. · Zbl 1291.62254 · doi:10.1007/BF02294536
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.