Violation of adiabaticity in magnetic billiards due to separatrix crossings. (English) Zbl 1374.37057

Summary: We consider dynamics of magnetic billiards with curved boundaries and strong inhomogeneous magnetic field. We investigate a violation of adiabaticity of charged particle motion in this system. The destruction of the adiabatic invariance is due to the change of type of the particle trajectory: particles can drift along the boundary reflecting from it or rotate around the magnetic field at some distance from the boundary without collisions with it. Trajectories of these two types are demarcated in the phase space by a separatrix. Crossings of the separatrix result in jumps of the adiabatic invariant. We derive an asymptotic formula for such a jump and demonstrate that an accumulation of these jumps leads to the destruction of the adiabatic invariance.{
©2015 American Institute of Physics}


37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)


Full Text: DOI Link


[1] Aichinger, M.; Janecek, S.; Räsänen, E., Billiards in magnetic fields: A molecular dynamics approach, Phys. Rev. E, 81, 1, 016703 (2010) · doi:10.1103/PhysRevE.81.016703
[2] Akhiezer, A. I.; Shul’ga, N. F.; Truten’, V. I.; Grinenko, A. A.; Syshchenko, V. V., Dynamics of high-energy charged particles in straight and bent crystals, Phys. Usp., 38, 1119-1145 (1995) · doi:10.1070/PU1995v038n10ABEH000114
[3] Akhiezer, A. I.; Truten’, V. I.; Shul’ga, N. F., Dynamic chaos in the motion of charged particles through a crystal, Phys. Rep., 203, 289-343 (1991) · doi:10.1016/0370-1573(91)90005-7
[4] Arnold, V. I.; Kozlov, V. V.; Neishtadt, A. I., Mathematical aspects of classical and celestial mechanics, Dynamical Systems. III. Encyclopaedia of Mathematical Sciences (2006) · Zbl 1105.70002
[5] Balikhin, M. A.; Sagdeev, R. Z.; Walker, S. N.; Pokhotelov, O. A.; Sibeck, D. G.; Beloff, N.; Dudnikova, G., THEMIS observations of mirror structures: Magnetic holes and instability threshold, Geophys. Res. Lett., 36, 3105 (2009) · doi:10.1029/2008GL036923
[6] Bernardi, S.; Hansen, J. S.; Frascoli, F.; Todd, B. D.; Dettmann, C. P., Ergodicity of a single particle confined in a nanopore, J. Stat. Phys., 148, 1156-1169 (2012) · Zbl 1259.82088 · doi:10.1007/s10955-012-0577-8
[7] Breymann, W.; Kovács, Z.; Tél, T., Chaotic scattering in the presence of an external magnetic field, Phys. Rev. E, 50, 1994-2006 (1994) · doi:10.1103/PhysRevE.50.1994
[8] Bunimovich, L. A.; Sinai, Y. G., Statistical properties of Lorentz gas with periodic configuration of scatterers, Commun. Math. Phys., 78, 479-497 (1981) · Zbl 0459.60099 · doi:10.1007/BF02046760
[9] Cary, J. R.; Escande, D. F.; Tennyson, J. L., Adiabatic-invariant change due to separatrix crossing, Phys. Rev. A, 34, 5, 4256-4275 (1986) · doi:10.1103/PhysRevA.34.4256
[10] Casati, G.; Prosen, T., Mixing property of triangular billiards, Phys. Rev. Lett., 83, 4729-4732 (1999) · doi:10.1103/PhysRevLett.83.4729
[11] Casati, G.; Prosen, T., Time irreversible billiards with piecewise-straight trajectories, Phys. Rev. Lett., 109, 17, 174101 (2012) · doi:10.1103/PhysRevLett.109.174101
[12] Chernov, N., Decay of correlations and dispersing billiards, J. Stat. Phys., 94, 513-556 (1999) · Zbl 1047.37503 · doi:10.1023/A:1004581304939
[13] Chernov, N.; Korepanov, A.; Simányi, N., Stable regimes for hard disks in a channel with twisting walls, Chaos, 22, 2, 026105 (2012) · Zbl 1331.82020 · doi:10.1063/1.3695367
[14] Chirikov, B. V., Particle Dynamics in Magnetic Traps (1987)
[15] Eichengrün, M.; Schirmacher, W.; Bregmann, W., Quantum chaotic scattering with a mixed phase space: The three-disk billiard in a magnetic field, Phys. Rev. E, 61, 382 (2000) · doi:10.1103/PhysRevE.61.382
[16] Góngora-T, A.; José, J. V.; Schaffner, S., Classical solutions of an electron in magnetized wedge billiards, Phys. Rev. E, 66, 4, 047201 (2002) · doi:10.1103/PhysRevE.66.047201
[17] Gorelyshev, I.; Neishtadt, A., Jump in adiabatic invariant at a transition between modes of motion for systems with impacts, Nonlinearity, 21, 661-676 (2008) · Zbl 1157.70013 · doi:10.1088/0951-7715/21/4/002
[18] Gutkin, B., Hyperbolic magnetic billiards on surfaces of constant curvature, Commun. Math. Phys., 217, 33-53 (2001) · Zbl 1003.37022 · doi:10.1007/s002200000346
[19] Gutkin, E., Billiard dynamics: An updated survey with the emphasis on open problems, Chaos, 22, 2, 026116 (2012) · Zbl 1331.37001 · doi:10.1063/1.4729307
[20] Hornberger, K.; Smilansky, U., Magnetic edge states, Phys. Rep., 367, 249-385 (2002) · doi:10.1016/S0370-1573(02)00141-2
[21] Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T., Annular billiard dynamics in a circularly polarized strong laser field, Phys. Rev. E, 85, 1, 016204 (2012) · doi:10.1103/PhysRevE.85.016204
[22] Kawabata, S.; Nakamura, K., Ballistic conductance fluctuation and quantum chaos in Sinai billiard, J. Phys. Soc. Jpn., 66, 712 (1997) · Zbl 0957.81003 · doi:10.1143/JPSJ.66.712
[23] Kovács, Z., Orbit stability in billiards in magnetic field, Phys. Rep., 290, 49-66 (1997) · doi:10.1016/S0370-1573(97)00058-6
[24] Kuznetsov, E. A.; Passot, T.; Sulem, P. L., Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 23, 235003 (2007) · doi:10.1103/PhysRevLett.98.235003
[25] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields (1971) · Zbl 0178.28704
[26] Laprise, J. F.; Hosseinizadeh, A.; Lamy-Poirier, J.; Zomorrodi, R.; Kröger, J.; Kröger, H., Universality in level spacing fluctuations of a chaotic optical billiard, Phys. Lett. A, 374, 2000-2004 (2010) · Zbl 1236.37025 · doi:10.1016/j.physleta.2010.02.057
[27] Leonel, E. D.; Beims, M. W.; Bunimovich, L. A., Introduction to focus issue: Statistical mechanics and billiard-type dynamical systems, Chaos, 22, 2, 026101 (2012) · doi:10.1063/1.4730155
[28] Leonel, E. D.; Bunimovich, L. A., Suppressing Fermi acceleration in two-dimensional driven billiards, Phys. Rev. E, 82, 1, 016202 (2010) · doi:10.1103/PhysRevE.82.016202
[29] Leonel, E. D.; McClintock, P. V.; da Silva, J. K., Fermi-Ulam accelerator model under scaling analysis, Phys. Rev. Lett., 93, 1, 014101 (2004) · doi:10.1103/PhysRevLett.93.014101
[30] Luukko, P. J. J.; Räsänen, E., Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields, Comput. Phys. Commun., 184, 769-776 (2013) · doi:10.1016/j.cpc.2012.09.029
[31] Marcus, C. M.; Rimberg, A. J.; Westervelt, R. M.; Hopkins, P. F.; Gossard, A. C., Conductance fluctuations and chaotic scattering in ballistic microstructures, Phys. Rev. Lett., 69, 506-509 (1992) · doi:10.1103/PhysRevLett.69.506
[32] Neishtadt, A., On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom, J. Appl. Math. Mech., 51, 586-592 (1987) · Zbl 0677.70024 · doi:10.1016/0021-8928(87)90006-2
[33] Neishtadt, A. I., Change of an adiabatic invariant at a separatrix, Sov. J. Plasma Phys., 12, 568-573 (1986)
[34] Neishtadt, A. I.; Artemyev, A. V., Destruction of adiabatic invariance for billiards in a strong nonuniform magnetic field, Phys. Rev. Lett., 108, 6, 064102 (2012) · doi:10.1103/PhysRevLett.108.064102
[35] Northrop, T. G., The Adiabatic Motion of Charged Particles (1963) · Zbl 0119.43703
[36] Oliveira, D. F. M.; Leonel, E. D., In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas, Chaos, 22, 2, 026123 (2012) · Zbl 1331.37113 · doi:10.1063/1.3697392
[37] Pérez-Pascual, R.; Rodríguez-Lara, B. M.; Jáuregui, R., Chaotic dynamics of thermal atoms in labyrinths created by optical lattices, J. Phys. B: At. Mol. Phys., 44, 3, 035303 (2011) · doi:10.1088/0953-4075/44/3/035303
[38] Rapoport, A.; Rom-Kedar, V., Chaotic scattering by steep repelling potentials, Phys. Rev. E, 77, 1, 016207 (2008) · doi:10.1103/PhysRevE.77.016207
[39] Robnik, M.; Berry, M. V., Classical billiards in magnetic fields, J. Phys. A, 18, 1361-1378 (1985) · Zbl 0569.70022 · doi:10.1088/0305-4470/18/9/019
[40] Sharma, A. S.; Nakamura, R.; Runov, A.; Grigorenko, E. E.; Hasegawa, H.; Hoshino, M.; Louarn, P.; Owen, C. J.; Petrukovich, A.; Sauvaud, J.-A.; Semenov, V. S.; Sergeev, V. A.; Slavin, J. A.; Sonnerup, B. U. Ã-.; Zelenyi, L. M.; Fruit, G.; Haaland, S.; Malova, H.; Snekvik, K., Transient and localized processes in the magnetotail: A review, Ann. Geophys., 26, 955-1006 (2008) · doi:10.5194/angeo-26-955-2008
[41] Sinai, Y. G., Dynamical systems with elastic reflections, Russ. Math. Surv., 25, 137-189 (1970) · Zbl 0263.58011 · doi:10.1070/RM1970v025n02ABEH003794
[42] Stöckmann, H.-J.; Stein, J., ‘Quantum’ chaos in billiards studied by microwave absorption, Phys. Rev. Lett., 64, 2215-2218 (1990) · doi:10.1103/PhysRevLett.64.2215
[43] Tasnádi, T., The behavior of nearby trajectories in magnetic billiards, J. Math. Phys., 37, 5577-5598 (1996) · Zbl 0858.58037 · doi:10.1063/1.531723
[44] Tasnádi, T., Hard chaos in magnetic billiards (on the hyperbolic plane), J. Math. Phys., 39, 3783-3804 (1998) · Zbl 0927.37020 · doi:10.1063/1.532468
[45] Teh, W.-L.; Eriksson, S.; Sonnerup, B. U. Ö.; Ergun, R.; Angelopoulos, V.; Glassmeier, K.-H.; McFadden, J. P.; Bonnell, J. W., THEMIS observations of a secondary magnetic island within the Hall electromagnetic field region at the magnetopause, Geophys. Res. Lett., 37, 21102 (2010) · doi:10.1029/2010GL045056
[46] Timofeev, A. V., On the problem of constancy of the adiabatic invariant during change of the type of motion, Sov. J. JETP, 75, 1303-1308 (1978)
[47] Varma, R. K., Classical and macroquantum dynamics of charged particles in a magnetic field, Phys. Rep., 378, 301-434 (2003) · Zbl 1040.78006 · doi:10.1016/S0370-1573(03)00005-X
[48] Zhang, T. L.; Baumjohann, W.; Russell, C. T.; Jian, L. K.; Wang, C.; Cao, J. B.; Balikhin, M.; Blanco-Cano, X.; Delva, M.; Volwerk, M., Mirror mode structures in the solar wind at 0.72 AU, J. Geophys. Res., 114, 10107 (2009) · doi:10.1029/2009JA014103
[49] Zharnitsky, V., Quasiperiodic motion in the Hamiltonian systems of the billiard type, Phys. Rev. Lett., 81, 4839-4842 (1998) · doi:10.1103/PhysRevLett.81.4839
[50] Zharnitsky, V., Invariant tori in Hamiltonian systems with impacts, Commun. Math. Phys., 211, 289-302 (2000) · Zbl 0956.37027 · doi:10.1007/s002200050813
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.