×

Seeking SUSY fixed points in the \(4-\epsilon\) expansion. (English) Zbl 1521.81320

Summary: We use the \(4-\epsilon\) expansion to search for fixed points corresponding to \(2 + 1\) dimensional \(\mathcal{N} =1\) Wess-Zumino models of \(N_\Phi\) scalar superfields interacting through a cubic superpotential. In the \(N_\Phi = 3\) case we classify all SUSY fixed points that are perturbatively unitary. In the \(N_\Phi = 4\) and \(N_\Phi = 5\) cases, we focus on fixed points where the scalar superfields form a single irreducible representation of the symmetry group (irreducible fixed points). For \(N_\Phi = 4\) we show that the S5 invariant super Potts model is the only irreducible fixed point where the four scalar superfields are fully interacting. For \(N_\Phi = 5\), we go through all Lie subgroups of O(5) and use the GAP system for computational discrete algebra to study finite subgroups of O(5) up to order 800. This analysis gives us three fully interacting irreducible fixed points. Of particular interest is a subgroup of O(5) that exhibits O(3)/Z2 symmetry. It turns out this fixed point can be generalized to a new family of models, with \(N_\Phi = \frac{N(N-1)}{2} - 1\) and \(\mathrm{O}(N)\)/Z2 symmetry, that exists for arbitrary integer \(N \geq 3\).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81V05 Strong interaction, including quantum chromodynamics

Software:

GAP; SmallGrp; ISOTROPY
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Grover, T.; Sheng, DN; Vishwanath, A., Emergent Space-Time Supersymmetry at the Boundary of a Topological Phase, Science, 344, 280 (2014) · doi:10.1126/science.1248253
[2] D. Bashkirov, Bootstrapping the \(\mathcal{N} = 1\) SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].
[3] Fei, L.; Giombi, S.; Klebanov, IR; Tarnopolsky, G., Yukawa CFTs and Emergent Supersymmetry, PTEP, 2016, 12C105 (2016) · Zbl 1361.81135
[4] V. Bashmakov, J. Gomis, Z. Komargodski and A. Sharon, Phases of \(\mathcal{N} = 1\) theories in 2 + 1 dimensions, JHEP07 (2018) 123 [arXiv:1802.10130] [INSPIRE]. · Zbl 1395.81260
[5] F. Benini and S. Benvenuti, \( \mathcal{N} = 1\) QED in 2 + 1 dimensions: dualities and enhanced symmetries, JHEP05 (2021) 176 [arXiv:1804.05707] [INSPIRE]. · Zbl 1466.81139
[6] D. Gaiotto, Z. Komargodski and J. Wu, Curious Aspects of Three-Dimensional \(\mathcal{N} = 1\) SCFTs, JHEP08 (2018) 004 [arXiv:1804.02018] [INSPIRE]. · Zbl 1396.81175
[7] F. Benini and S. Benvenuti, \( \mathcal{N} = 1\) dualities in 2+1 dimensions, JHEP11 (2018) 197 [arXiv:1803.01784] [INSPIRE]. · Zbl 1405.81117
[8] J. Rong and N. Su, Bootstrapping the minimal \(\mathcal{N} = 1\) superconformal field theory in three dimensions, JHEP06 (2021) 154 [arXiv:1807.04434] [INSPIRE].
[9] Atanasov, A.; Hillman, A.; Poland, D., Bootstrapping the Minimal 3D SCFT, JHEP, 11, 140 (2018) · doi:10.1007/JHEP11(2018)140
[10] J. Rong and N. Su, Bootstrapping the \(\mathcal{N} = 1\) Wess-Zumino models in three dimensions, JHEP06 (2021) 153 [arXiv:1910.08578] [INSPIRE].
[11] Wess, J.; Zumino, B., Supergauge Transformations in Four-Dimensions, Nucl. Phys. B, 70, 39 (1974) · doi:10.1016/0550-3213(74)90355-1
[12] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Deconfined Quantum Critical Points, Science303 (2004) 1490 [cond-mat/0311326] [INSPIRE].
[13] C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev. X7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].
[14] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031 (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[15] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[16] Osborn, H.; Stergiou, A., Seeking fixed points in multiple coupling scalar theories in the ϵ expansion, JHEP, 05, 051 (2018) · Zbl 1391.81172 · doi:10.1007/JHEP05(2018)051
[17] A. Codello, M. Safari, G.P. Vacca and O. Zanusso, Symmetry and universality of multifield interactions in 6 − ϵ dimensions, Phys. Rev. D101 (2020) 065002 [arXiv:1910.10009] [INSPIRE].
[18] Osborn, H.; Stergiou, A., Heavy handed quest for fixed points in multiple coupling scalar theories in the ϵ expansion, JHEP, 04, 128 (2021) · Zbl 1462.81147 · doi:10.1007/JHEP04(2021)128
[19] E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Discussion of critical phenomena in multicomponent systems, Phys. Rev. B10 (1974) 892 [INSPIRE].
[20] L. Michel, J. Toledano and P. Toledano, Landau free energies for n=4 and the subgroups of o (4), Symmetries and broken symmetries in condensed matter physics, Proceedings of the Colloque Pierre Curie held at the Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, September 1980, ed. N. Boccara, IDSET Paris (1981), pp. 263-276
[21] B. Grinstein, D. Stone, A. Stergiou and M. Zhong, Challenge to the a Theorem in Six Dimensions, Phys. Rev. Lett.113 (2014) 231602 [arXiv:1406.3626] [INSPIRE].
[22] O. Gelber and O. Zanusso, private communication.
[23] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.11.1, 2021.
[24] B. Eick, H. Besche and E. O’Brien, Smallgrp — the gap small groups library, GAP package, version 1 (2018).
[25] P.O. Ludl, On the finite subgroups of U(3) of order smaller than 512, J. Phys. A43 (2010) 395204 [Erratum ibid.44 (2011) 139501] [arXiv:1006.1479] [INSPIRE]. · Zbl 1200.81082
[26] M. Hall, The theory of groups, Courier Dover Publications (2018). · Zbl 1381.20002
[27] Cvitanovic, P., Group theory: Birdtracks, Lie’s and exceptional groups (2008), Princeton New Jersey U.S.A.: Princeton University Press, Princeton New Jersey U.S.A. · Zbl 1152.22001 · doi:10.1515/9781400837670
[28] R. Eager, Local Operators from the Space of Vacua of Four Dimensional SUSY Gauge Theories, arXiv:1810.01192 [INSPIRE].
[29] Deligne, P., La série exceptionnelle de groupes de lie, Compt. Rend. Math., 322, 321 (1996) · Zbl 0910.22008
[30] Deligne, P.; Gross, BH, On the exceptional series, and its descendants, Compt. Rend. Math., 335, 877 (2002) · Zbl 1017.22008 · doi:10.1016/S1631-073X(02)02590-6
[31] Binder, DJ; Rychkov, S., Deligne Categories in Lattice Models and Quantum Field Theory, or Making Sense of O(N) Symmetry with Non-integer N, JHEP, 04, 117 (2020) · Zbl 1436.81099 · doi:10.1007/JHEP04(2020)117
[32] R.K.P. Zia and D.J. Wallace, Critical Behavior of the Continuous N Component Potts Model, J. Phys. A8 (1975) 1495 [INSPIRE].
[33] Leigh, RG; Petkou, AC, Holography of the N = 1 higher spin theory on AdS_4, JHEP, 06, 011 (2003) · doi:10.1088/1126-6708/2003/06/011
[34] Sezgin, E.; Sundell, P., Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP, 07, 044 (2005) · doi:10.1088/1126-6708/2005/07/044
[35] Baggio, M.; Bobev, N.; Chester, SM; Lauria, E.; Pufu, SS, Decoding a Three-Dimensional Conformal Manifold, JHEP, 02, 062 (2018) · Zbl 1387.81304 · doi:10.1007/JHEP02(2018)062
[36] Toledano, J-C; Michel, L.; Toledano, P.; Brézin, E., Renormalization-group study of the fixed points and of their stability for phase transitions with four-component order parameters, Phys. Rev. B, 31, 7171 (1985) · doi:10.1103/PhysRevB.31.7171
[37] Hatch, DM; Stokes, HT; Kim, JS; Felix, JW, Selection of stable fixed points by the toledano-michel symmetry criterion: Six-component example, Phys. Rev. B, 32, 7624 (1985) · doi:10.1103/PhysRevB.32.7624
[38] Kim, JS; Hatch, DM; Stokes, HT, Classification of continuous phase transitions and stable phases. I. Six-dimensional order parameters, Phys. Rev. B, 33, 1774 (1986) · doi:10.1103/PhysRevB.33.1774
[39] Hatch, DM; Kim, JS; Stokes, HT; Felix, JW, Renormalization-group classification of continuous structural phase transitions induced by six-component order parameters, Phys. Rev. B, 33, 6196 (1986) · doi:10.1103/PhysRevB.33.6196
[40] Stokes, HT; Kim, JS; Hatch, DM, Continuous solid-solid phase transitions driven by an eight-component order parameter: Hamiltonian densities and renormalization-group theory, Phys. Rev. B, 35, 388 (1987) · doi:10.1103/PhysRevB.35.388
[41] H.T. Stokes and D.M. Hatch, Isotropy subgroups of the 230 crystallographic space groups, World Scientific (1988). · Zbl 1081.20502
[42] Rychkov, S.; Stergiou, A., General Properties of Multiscalar RG Flows in d = 4 − ε, SciPost Phys., 6, 008 (2019) · doi:10.21468/SciPostPhys.6.1.008
[43] Hogervorst, M.; Toldo, C., Bounds on multiscalar CFTs in the ϵ expansion, JHEP, 04, 068 (2021) · Zbl 1462.81174 · doi:10.1007/JHEP04(2021)068
[44] Rong, J.; Su, N., Scalar CFTs and Their Large N Limits, JHEP, 09, 103 (2018) · Zbl 1398.81223 · doi:10.1007/JHEP09(2018)103
[45] Stergiou, A., Bootstrapping hypercubic and hypertetrahedral theories in three dimensions, JHEP, 05, 035 (2018) · Zbl 1391.81174 · doi:10.1007/JHEP05(2018)035
[46] Kousvos, SR; Stergiou, A., Bootstrapping Mixed Correlators in Three-Dimensional Cubic Theories, SciPost Phys., 6, 035 (2019) · doi:10.21468/SciPostPhys.6.3.035
[47] Stergiou, A., Bootstrapping MN and Tetragonal CFTs in Three Dimensions, SciPost Phys., 7, 010 (2019) · doi:10.21468/SciPostPhys.7.1.010
[48] Kousvos, SR; Stergiou, A., Bootstrapping Mixed Correlators in Three-Dimensional Cubic Theories II, SciPost Phys., 8, 085 (2020) · doi:10.21468/SciPostPhys.8.6.085
[49] Henriksson, J.; Kousvos, SR; Stergiou, A., Analytic and Numerical Bootstrap of CFTs with O(m) × O(n) Global Symmetry in 3D, SciPost Phys., 9, 035 (2020) · doi:10.21468/SciPostPhys.9.3.035
[50] Henriksson, J.; Stergiou, A., Perturbative and Nonperturbative Studies of CFTs with MN Global Symmetry, SciPost Phys., 11, 015 (2021) · doi:10.21468/SciPostPhys.11.1.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.