Al-Assam, S.; Clark, S. R.; Jaksch, D. The tensor network theory library. (English) Zbl 1459.81004 J. Stat. Mech. Theory Exp. 2017, No. 9, Article ID 093102, 36 p. (2017). Summary: In this technical paper we introduce the tensor network theory (TNT) library – an open-source software project aimed at providing a platform for rapidly developing robust, easy to use and highly optimised code for TNT calculations. The objectives of this paper are (i) to give an overview of the structure of TNT library, and (ii) to help scientists decide whether to use the TNT library in their research. We show how to employ the TNT routines by giving examples of ground-state and dynamical calculations of one-dimensional bosonic lattice system. We also discuss different options for gaining access to the software available at . Cited in 1 Document MSC: 81-04 Software, source code, etc. for problems pertaining to quantum theory 81P68 Quantum computation Software:VirtualBox; evoMPS; snake; ITensor; ALPS; NetCDF; DMRG++; Tensor Network Theory; GitHub PDF BibTeX XML Cite \textit{S. Al-Assam} et al., J. Stat. Mech. Theory Exp. 2017, No. 9, Article ID 093102, 36 p. (2017; Zbl 1459.81004) Full Text: DOI arXiv OpenURL References: [1] Schollwöck U 2011 The density-matrix renormalization group in the age of matrix product states Ann. Phys.326 96-192 [2] Verstraete F, Murg V and Cirac J I 2008 Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems Adv. Phys.57 143-224 [3] Orus R 2014 A practical introduction to tensor networks: matrix product states and projected entangled pair states Ann. Phys.349 117-58 [4] Evenbly G and Vidal G 2013 Quantum criticality with the multi-scale entanglement renormalization ansatz Strongly Correlated Systems. Numerical Methods(Springer Series in Solid-State Sciences vol 176) ed A Avella and F Mancini ch 4 [5] Oseledets I V 2011 Tensor-train decomposition SIAM J. Sci. Comput.33 2295-317 [6] Cichocki A 2014 Era of big data processing: a new approach via tensor networks and tensor decompositions (arXiv:1403.2048) [7] Singh S, Pfeifer R N C and Vidal G 2011 Tensor network states and algorithms in the presence of a global U(1) symmetry Phys. Rev. B 83 115125 [8] Bauer B et al 2011 The ALPS project release 2.0: open source software for strongly correlated systems J. Stat. Mech. P05001 [9] De Chiara G, Rizzi M, Rossini D and Montangero S 2006 Density matrix renormalization group for dummies (arXiv:cond-mat/0603842) [10] Chan G K-L Block code for DMRG http://chemists.princeton.edu/chan/software/block-code-for-dmrg/ [11] Köhler T DMRG-applet http://chemists.princeton.edu/chan/software/block-code-for-dmrg/ [12] Milsted A and Osborne T evoMPS https://github.com/amilsted/evoMPS [13] Alvarez G DMRG++ https://github.com/g1257/dmrgpp [14] Guo C, Xiang T and von Delft J snake-dmrg https://github.com/entron/snake-dmrg [15] Garrison J R and Mishmash R V Simple DMRG http://simple-dmrg.readthedocs.io/en/latest/index.html [16] Stoudenmire E M and White S R iTensor http://itensor.org [17] Kao Y-J, Chen P, Yun-Hsuan Chou Y-H and Lai C-Y The universal tensor network library http://yingjerkao.github.io/uni10/ [18] Basov D N, Averitt R D, van der Marel D, Dressel M and Haule K 2011 Electrodynamics of correlated electron materials Rev. Mod. Phys.83 471-541 [19] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys.80 885-964 [20] Nicoletti D and Cavalleri A 2016 Nonlinear light-matter interaction at terahertz frequencies Adv. Opt. Photon.8 401-64 [21] Dagotto E 1994 Correlated electrons in high-temperature superconductors Rev. Mod. Phys.66 763-840 [22] Eisert J, Cramer M and Plenio M B 2010 Colloquium: area laws for the entanglement entropy Rev. Mod. Phys.82 277-306 [23] White S R 1992 Density matrix formulation for quantum renormalization groups Phys. Rev. Lett.69 2863-6 [24] Vidal G 2003 Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett.91 147902 [25] Daley A J 2014 Quantum trajectories and open many-body quantum systems Adv. Phys.63 77-149 [26] Zwolak M and Vidal G 2004 Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm Phys. Rev. Lett.93 207205 [27] Clark S R and Jaksch D 2004 Dynamics of the superfluid to mott-insulator transition in one dimension Phys. Rev. A 70 043612 [28] Trotzky S, Chen Y-A, Flesch A, McCulloch I P, Schollwock U, Eisert J and Bloch I 2012 Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional bose gas Nat. Phys.8 325-30 [29] Richards A 2015 [30] Oracle VirtualBox www.virtualbox.org/ [31] Maintained by Software Engineering Support Centre, STFC. CCPForge http://ccpforge.cse.rl.ac.uk/gf/project/tntlibrary [32] Singh S and Vidal G 2012 Tensor network states and algorithms in the presence of a global SU(2) symmetry Phys. Rev. B 86 195114 [33] Al-Assam S, Clark S R and Jaksch D TNT library documentation www.tensornetworktheory.org/documentation [34] Pfeifer R N C, Haegeman J and Verstraete F 2014 Faster identification of optimal contraction sequences for tensor networks Phys. Rev. E 90 033315 [35] Hubig C, Mcculloch I P, Schollwöck U and Wolf F A 2015 Strictly single-site DMRG algorithm with subspace expansion Phys. Rev. B 91 155115 [36] Unidata NetCDF 4 Boulder, CO: UCAR/Unidata Program Center www.unidata.ucar.edu/software/netcdf/ This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.