×

SO(8) supergravity and the magic of machine learning. (English) Zbl 1421.83131

Summary: Using de Wit-Nicolai \(D= 4 \mathcal{N} = 8\) SO(8) supergravity as an example, we show how modern Machine Learning software libraries such as Google’s TensorFlow can be employed to greatly simplify the analysis of high-dimensional scalar sectors of some M-Theory compactifications. We provide detailed information on the location, symmetries, and particle spectra and charges of 192 critical points on the scalar manifold of SO(8) supergravity, including one newly discovered \(\mathcal{N} = 1\) vacuum with SO(3) residual symmetry, one new potentially stabilizable non-supersymmetric solution, and examples for “Galois conjugate pairs” of solutions, i.e. solution-pairs that share the same gauge group embedding into SO(8) and minimal polynomials for the cosmological constant. Where feasible, we give analytic expressions for solution coordinates and cosmological constants.
As the authors’ aspiration is to present the discussion in a form that is accessible to both the Machine Learning and String Theory communities and allows adopting our methods towards the study of other models, we provide an introductory overview over the relevant Physics as well as Machine Learning concepts. This includes short pedagogical code examples. In particular, we show how to formulate a requirement for residual Supersymmetry as a Machine Learning loss function and effectively guide the numerical search towards supersymmetric critical points. Numerical investigations suggest that there are no further supersymmetric vacua beyond this newly discovered fifth solution.

MSC:

83E50 Supergravity
81R40 Symmetry breaking in quantum theory
68T05 Learning and adaptive systems in artificial intelligence
81T60 Supersymmetric field theories in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hawking, SW, Is the end in sight for theoretical physics?, Phys. Bull., 32, 15 (1981) · doi:10.1088/0031-9112/32/1/024
[2] M. Abadi et al., TensorFlow: a system for large-scale machine learning, talk given at the12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), November 2-4, Savannah, U.S.A. (2016).
[3] B. de Wit and H. Nicolai, N = 8 supergravity with Local SO(8) × SU(8) invariance, Phys. Lett. B108 (1982) 285 [INSPIRE].
[4] B. de Wit and H. Nicolai, Local SO(8) × SU(8) invariance in \(\mathcal{N} = 8\) supergravity and its implication for superunification, technical report CM-P00062104 (1981).
[5] Günaydin, M.; Romans, LJ; Warner, NP, Gauged N = 8 supergravity in five-dimensions, Phys. Lett., 154B, 268 (1985) · doi:10.1016/0370-2693(85)90361-2
[6] https://colab.sandbox.google.com/github/google-research/google-research/blob/master/m theory/dim4/so8_supergravity_extrema/colab/so8_supergravity.ipynb
[7] https://github.com/google-research/google-research/tree/master/m_theory
[8] Duff, MJ, The theory formerly known as strings, Sci. Amer., 278, 64 (1998) · doi:10.1038/scientificamerican0298-64
[9] E. Witten, String theory dynamics in various dimensions, Nucl. Phys.B 443 (1995) 85 [hep-th/9503124] [INSPIRE]. · Zbl 0990.81663
[10] J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys.B 70 (1974) 39 [INSPIRE].
[11] Freedman, DZ; Nieuwenhuizen, P.; Ferrara, S., Progress toward a theory of supergravity, Phys. Rev., D 13, 3214 (1976)
[12] Deser, S.; Zumino, B., Consistent supergravity, Phys. Lett., B 62, 335 (1976) · doi:10.1016/0370-2693(76)90089-7
[13] Bern, Z.; etal., Ultraviolet behavior of \(\mathcal{N} = 8\) supergravity at four loops, Phys. Rev. Lett., 103, 81301 (2009) · doi:10.1103/PhysRevLett.103.081301
[14] Z. Bern, Ultraviolet surprises in gravity, talk given at Bay Area Particle Theory Seminar (BAPTS), October9, San Francisco, U.S.A (2015).
[15] Deser, S.; Kay, JH; Stelle, KS, Renormalizability properties of supergravity, Phys. Rev. Lett., 38, 527 (1977) · doi:10.1103/PhysRevLett.38.527
[16] E. Witten, What every physicist should know about string theory, in Foundations of mathematics and physics one century after Hilbert, J. Kouneiher ed., Springer, Germany (2018).
[17] S. Weinberg, The quantum theory of fields. Vol. 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2013). · Zbl 1069.81501
[18] Tanabashi, M.; etal., Review of particle physics, Phys. Rev., D 98, 030001 (2018)
[19] Bertone, G.; Hooper, D.; Silk, J., Particle dark matter: evidence, candidates and constraints, Phys. Rept., 405, 279 (2005) · doi:10.1016/j.physrep.2004.08.031
[20] R. D. Peccei, The strong CP problem and axions, in Axions, M. Kuster et al. eds., Springer, Germany (2008). · doi:10.1007/978-3-540-73518-2_1
[21] Carroll, SM, The cosmological constant, Liv. Rev. Rel., 4, 1 (2001) · Zbl 1023.83022 · doi:10.12942/lrr-2001-1
[22] E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE]. · Zbl 1216.81129
[23] Adler, SL, Axial-vector vertex in spinor electrodynamics, Phys. Rev., 177, 2426 (1969) · doi:10.1103/PhysRev.177.2426
[24] A. Bilal, Lectures on anomalies, arXiv:0802.0634 [INSPIRE].
[25] Georgi, H.; Glashow, SL, Unity of all elementary particle forces, Phys. Rev. Lett., 32, 438 (1974) · doi:10.1103/PhysRevLett.32.438
[26] J.C. Pati and A. Salam, Lepton number as the fourth “color”, Phys. Rev.10 (1974) 275.
[27] Englert, F., Nobel lecture: the BEH mechanism and its scalar boson, Rev. Mod. Phys., 86, 843 (2014) · Zbl 1297.81005 · doi:10.1103/RevModPhys.86.843
[28] Higgs, PW, Nobel lecture: evading the Goldstone theorem, Rev. Mod. Phys., 86, 851 (2014) · doi:10.1103/RevModPhys.86.851
[29] Nicolai, H.; Warner, NP, The SU(3) × U(1) invariant breaking of gauged N = 8 supergravity, Nucl. Phys., B 259, 412 (1985) · doi:10.1016/0550-3213(85)90643-1
[30] Meissner, KA; Nicolai, H., Standard model fermions and \(\mathcal{N} = 8\) supergravity, Phys. Rev., D 91, 65029 (2015)
[31] Kleinschmidt, A.; Nicolai, H., Standard model fermions and K(E_10), Phys. Lett., B 747, 251 (2015) · Zbl 1369.81118 · doi:10.1016/j.physletb.2015.06.005
[32] N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 supersymmetric RG flows on M 2 branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].
[33] T. Kaluza, On the unification problem in physics, Int. J. Mod. Phys.D 27 (2018) 1870001.
[34] Klein, O., Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys., 37, 895 (1926) · JFM 52.0970.09 · doi:10.1007/BF01397481
[35] Cremmer, E.; Julia, B.; Scherk, J., Supergravity theory in eleven-dimensions, Phys. Lett., B 76, 409 (1978) · Zbl 1156.83327 · doi:10.1016/0370-2693(78)90894-8
[36] Cremmer, E.; Julia, B., The N = 8 supergravity theory. 1. The lagrangian, Phys. Lett., B 80, 48 (1978) · doi:10.1016/0370-2693(78)90303-9
[37] Cremmer, E.; Julia, B., The SO(8) supergravity, Nucl. Phys., B 159, 141 (1979) · doi:10.1016/0550-3213(79)90331-6
[38] Parisi, G.; Sourlas, N., Supersymmetric field theories and stochastic differential equations, Nucl. Phys., B 206, 321 (1982) · Zbl 0968.81547 · doi:10.1016/0550-3213(82)90538-7
[39] Ferrara, S.; Scherk, J.; Zumino, B., Algebraic properties of extended supergravity theories, Nucl. Phys. B, 121, 393 (1977) · doi:10.1016/0550-3213(77)90161-4
[40] Fradkin, ES; Vasiliev, MA, Minimal set of auxiliary fields in SO(2) extended supergravity, Phys. Lett., 85B, 47 (1979) · Zbl 0967.83530 · doi:10.1016/0370-2693(79)90774-3
[41] Fayet, P., Fermi-Bose hypersymmetry, Nucl. Phys. B, 113, 135 (1976) · doi:10.1016/0550-3213(76)90458-2
[42] J. Scherk, Antigravity: a crazy idea?, Phys. Lett.88B (1979) 265 [INSPIRE].
[43] E. Kopczynski, D. Celinska and M. Čtrnáct, HyperRogue: playing with Hyperbolic Geometry, in the proceedings of the Bridges Conference, July 27-31, Ontario, Canada (2017).
[44] Milnor, J., On manifolds homeomorphic to the 7-sphere, Ann. Math., 64, 399 (1956) · Zbl 0072.18402 · doi:10.2307/1969983
[45] Brieskorn, EV, Examples of singular normal complex spaces which are topological manifolds, Proc. Natl. Acad. Sci. U.S.A., 55, 1395 (1966) · Zbl 0144.45001 · doi:10.1073/pnas.55.6.1395
[46] B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE].
[47] E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in the proceedings of Quantum field theory and the fundamental problems of physics, June 1-3, Shelter Island, U.S.A. (1983).
[48] Maldacena, J., The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[49] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126
[50] Witten, E., Anti de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[51] Kovtun, P.; Son, DT; Starinets, AO, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601 (2005) · doi:10.1103/PhysRevLett.94.111601
[52] Gubser, SS, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev., D 78, 065034 (2008)
[53] Hartnoll, SA; Herzog, CP; Horowitz, GT, Holographic superconductors, JHEP, 12, 015 (2008) · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[54] Hartnoll, SA; Herzog, CP; Horowitz, GT, Building a Holographic Superconductor, Phys. Rev. Lett., 101, 031601 (2008) · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[55] J. Ehlers, Konstruktionen und Charakterisierung von Losungen der Einsteinschen Gravitationsfeldgleichungen, Ph.D. thesis, Hamburg University, Hamburg, Germany (1957).
[56] Geroch, R., A method for generating solutions of Einstein’s equations, J. Math. Phys., 12, 918 (1971) · Zbl 0214.49002 · doi:10.1063/1.1665681
[57] Berkeley, J.; Berman, DS, The Navier-Stokes equation and solution generating symmetries from holography, JHEP, 04, 092 (2013) · doi:10.1007/JHEP04(2013)092
[58] Bhattacharyya, S.; Minwalla, S.; Hubeny, VE; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045 (2008) · doi:10.1088/1126-6708/2008/02/045
[59] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., \( \mathcal{N} = 6\) superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP, 10, 091 (2008) · Zbl 1245.81130 · doi:10.1088/1126-6708/2008/10/091
[60] Bobev, N.; Min, VS; Pilch, K., Mass-deformed ABJM and black holes in AdS_4, JHEP, 03, 050 (2018) · Zbl 1388.83752 · doi:10.1007/JHEP03(2018)050
[61] Turing, AM, Computing machinery and intelligence, Mind, 49, 433 (1950) · doi:10.1093/mind/LIX.236.433
[62] Samuel, AL, Some studies in machine learning using the game of checkers, IBM J. Res. Dev., 3, 210 (1959) · doi:10.1147/rd.33.0210
[63] C. Olah, A. Mordvintsev and L. Schubert, Feature visualization, Distill2 (2017) e7.
[64] D. Genzel and A. Popat, Paper to digital in 200+ languages, (2015).
[65] A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, inAdvances in neural information processing systems 25, F. Pereira et al. eds., Curran Associates Inc., U.S.A. (2012).
[66] C. Szegedy et al., Going deeper with convolutions, in the proceedings of the 28^thIEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, Boston, U.S.A. (2014) [arXiv:1409.4842].
[67] P. Sharma, N. Ding, S. Goodman and R. Soricut, Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning, in the proceedings of the56^thAnnual Meeting of the Association for Computational Linguistics , July 15-20, Melbourne, Australia (2018).
[68] A. Vaswani et al., Attention is all you need, in Advances in neural information processingsystems 30 , I. Guyon et al. eds., Curran Associates Inc., U.S.A. (2017).
[69] Silver, D.; etal., Mastering the game of Go with deep neural networks and tree search, Nature, 529, 484 (2016) · doi:10.1038/nature16961
[70] O. Vinyals et al., AlphaStar: mastering the real-time strategy game StarCraft II, https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii (2019).
[71] T. Karras, S. Laine and T. Aila, A style-based generator architecture for generative adversarial networks, arXiv:1812.04948.
[72] Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev., 65, 386 (1958) · doi:10.1037/h0042519
[73] D.E. Rumelhart et al., A general framework for parallel distributed processing, in Parallel distributed processing: Explorations in the microstructure of cognition, D.E. Rumelhart and J.L. McClelland eds., MIT Press, U.S.A. (1986).
[74] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Comput., 9, 1735 (1997) · doi:10.1162/neco.1997.9.8.1735
[75] Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 86, 2278 (1998) · doi:10.1109/5.726791
[76] Hartman, EJ; Keeler, JD; Kowalski, JM, Layered neural networks with gaussian hidden units as universal approximations, Neural Comput., 2, 210 (1990) · doi:10.1162/neco.1990.2.2.210
[77] Hinton, GE; Osindero, S.; Teh, Y-W, A fast learning algorithm for deep belief nets, Neural Comput., 18, 1527 (2006) · Zbl 1106.68094 · doi:10.1162/neco.2006.18.7.1527
[78] Cortes, C.; Vapnik, V., Support-vector networks, Machine Learn., 20, 273 (1995) · Zbl 0831.68098
[79] X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in the proceedings of the14th International Conference on Artificial Intelligence and Statistics, April 11-13, Ft. Lauderdale, U.S.A. (2011).
[80] Kohonen, T., Self-organized formation of topologically correct feature maps, Biol. Cybernet., 43, 59 (1982) · Zbl 0466.92002 · doi:10.1007/BF00337288
[81] P. Covington, J. Adams and E. Sargin, Deep neural networks for YouTube recommendations, in the proceedings of the 10^thACM Conference on Recommender Systems (RecSys’16), September 15-19, Boston, U.S.A. (2016).
[82] Mnih, V.; etal., Human-level control through deep reinforcement learning, Nature, 518, 529 (2015) · doi:10.1038/nature14236
[83] R. Dunne and N. Campbell, On the pairing of the Softmax activation and cross-entropy penalty functions and the derivation of the Softmax activation function, in the proceedings of the 8^thAustralian Conference on Neural Networks (ACNN97), Australia (1997).
[84] B. Speelpenning, Compiling fast partial derivatives of functions given by algorithms, Ph.D. thesis, University of Illinois Urbana-Champaign, Champaign, U.S.A. (1980).
[85] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error propagation, technical report, US Dept of the Navy, Cambridge, U.S.A. (1985). · doi:10.21236/ADA164453
[86] Bellman, R., Dynamic programming and a new formalism in the calculus of variations, Proc. Natl. Acad. Sci., 40, 231 (1954) · Zbl 0058.36303 · doi:10.1073/pnas.40.4.231
[87] R6RS-AD, https://github.com/qobi/R6RS-AD.
[88] R. Kondor et al., Covariant compositional networks for learning graphs, [arXiv:1801.02144].
[89] I. Bars, Supersymmetry, p-brane duality and hidden space-time dimensions, Phys. Rev.D 54 (1996) 5203 [hep-th/9604139] [INSPIRE].
[90] Bergshoeff, E.; Sezgin, E.; Townsend, PK, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett., B 189, 75 (1987) · Zbl 1156.81434 · doi:10.1016/0370-2693(87)91272-X
[91] E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989). · Zbl 1156.83327
[92] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept.130 (1986) 1 [INSPIRE].
[93] Freund, PGO; Rubin, MA, Dynamics of dimensional reduction, Phys. Lett., B 97, 233 (1980) · doi:10.1016/0370-2693(80)90590-0
[94] E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1., Nucl. Phys.B 523 (1998) 73 [hep-th/9710119] [INSPIRE]. · Zbl 1031.81599
[95] E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities, Nucl. Phys.B 535 (1998) 242 [hep-th/9806106] [INSPIRE]. · Zbl 1080.81598
[96] M.J. Duff, Ultraviolet divergences in extended supergravity, talk given at the First School on Supergravity, April 22-May 6, Trieste, Italy (1981), arXiv:1201.0386 [INSPIRE].
[97] B. Biran, F. Englert, B. de Wit and H. Nicolai, Gauged N = 8 supergravity and its breaking from spontaneous compactification, Phys. Lett.B 124 (1983) 45.
[98] M.J. Duff and C.N. Pope, Kaluza-Klein supergravity and the seven sphere, in the proceedings of the September School on Supergravity and Supersymmetry, September 6-18, Trieste, Italy (1982).
[99] B. de Wit and H. Nicolai, The consistency of the S^7truncation in D = 11 supergravity, Nucl. Phys.B 281 (1987) 211 [INSPIRE].
[100] H. Nicolai and K. Pilch, Consistent truncation of d = 11 supergravity on AdS_4 × S^7, JHEP03 (2012) 099 [arXiv:1112.6131] [INSPIRE]. · Zbl 1309.81234
[101] Duff, MJ; Nilsson, BEW; Pope, CN, Compactification of d = 11 Supergravity on K(3) × U(3), Phys. Lett. B, 129, 39 (1983) · Zbl 1156.83328 · doi:10.1016/0370-2693(83)90724-4
[102] B. de Wit, H. Samtleben and M. Trigiante, The maximal \(\mathcal{D} = 4\) supergravities, JHEP 06 (2007) 049. · Zbl 1207.83073
[103] Hull, CM; Warner, NP, The structure of the gauged N = 8 supergravity theories, Nucl. Phys., B 253, 650 (1985) · doi:10.1016/0550-3213(85)90551-6
[104] C.M. Hull, Non-compact gaugings of \(\mathcal{N} = 8\) supergravity, in Supergravities in Diverse Dimensions, A. Salam and E. Sezgin eds., World Scientific Publishing Company, Singapore (1989).
[105] Dall’Agata, G.; Inverso, G.; Trigiante, M., Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett., 109, 201301 (2012) · doi:10.1103/PhysRevLett.109.201301
[106] Wit, B.; Samtleben, H.; Trigiante, M., On Lagrangians and gaugings of maximal supergravities, Nucl. Phys., B 655, 93 (2003) · Zbl 1009.83063 · doi:10.1016/S0550-3213(03)00059-2
[107] B. de Wit, Supergravity, in the proceedings of Unity from duality. Gravity, gauge theory and strings. NATO Advanced Study Institute, Euro Summer School, 76^thsession, July 30-August 31, Les Houches, France (2001), hep-th/0212245 [INSPIRE].
[108] Fischbacher, T., Fourteen new stationary points in the scalar potential of SO(8)-gauged N = 8, D = 4 supergravity, JHEP, 09, 068 (2010) · Zbl 1291.81245 · doi:10.1007/JHEP09(2010)068
[109] Rainich, GY, Electrodynamics in the general relativity theory, Proc. Natl. Acad. Sci., 10, 124 (1924) · JFM 50.0597.02 · doi:10.1073/pnas.10.4.124
[110] Warner, NP, Some properties of the scalar potential in gauged supergravity theories, Nucl. Phys., B 231, 250 (1984) · doi:10.1016/0550-3213(84)90286-4
[111] Breitenlohner, P.; Freedman, DZ, Stability in gauged extended supergravity, Annals Phys., 144, 249 (1982) · Zbl 0606.53044 · doi:10.1016/0003-4916(82)90116-6
[112] T. Fischbacher, K. Pilch and N.P. Warner, New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory, arXiv:1010.4910 [INSPIRE].
[113] Godazga, H., An SO(3) × SO(3) invariant solution of D = 11 supergravity, JHEP, 01, 056 (2015) · Zbl 1388.83808 · doi:10.1007/JHEP01(2015)056
[114] Borghese, A.; Linares, R.; Roest, D., Minimal Stability in Maximal Supergravity, JHEP, 07, 034 (2012) · Zbl 1397.83181 · doi:10.1007/JHEP07(2012)034
[115] Fischbacher, T., The many vacua of gauged extended supergravities, Gen. Rel. Grav., 41, 315 (2009) · Zbl 1162.83301 · doi:10.1007/s10714-008-0736-z
[116] Warner, NP, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett., 128B, 169 (1983) · doi:10.1016/0370-2693(83)90383-0
[117] B. de Wit and H. Nicolai, A new SO(7) invariant solution of d = 11 supergravity, Phys. Lett.148B (1984) 60 [INSPIRE].
[118] Bobev, N.; Halmagyi, N.; Pilch, K.; Warner, NP, Supergravity instabilities of non-supersymmetric quantum critical points, Class. Quant. Grav., 27, 235013 (2010) · Zbl 1205.83065 · doi:10.1088/0264-9381/27/23/235013
[119] Wit, B.; Nicolai, H., The parallelizing S_7torsion in gauged N = 8 supergravity, Nucl. Phys., B 231, 506 (1984) · doi:10.1016/0550-3213(84)90517-0
[120] Google colaboratory, https://colab.sandbox.google.com.
[121] N.P. Jouppi et al., In-datacenter performance analysis of a tensor processing unit, in the proceedings of the 44^thAnnual International Symposium on Computer Architecture (ISCA’17), June 24-28, Toronto, Canada (2017), arXiv:1704.04760.
[122] J. Nocedal and S. Wright, Numerical optimization, 2^nd edition, Springer Series in Operations Research and Financial Engineering, Springer, Germany (2006). · Zbl 1104.65059
[123] M. Morse, The calculus of variations in the large, Monat. Math. Phys.47 (1939) A10. · JFM 58.0537.01
[124] N. Bobev, T. Fischbacher and K. Pilch, A new \(\mathcal{N} = 1\) AdS_4vacuum of maximal supergravity, work in progress.
[125] T. Fischbacher, The encyclopedic reference of critical points for SO(8)-gauged N = 8 supergravity. Part 1: cosmological constants in the range −Λ/g^2 ∈ [6 : 14.7), arXiv:1109.1424 [INSPIRE]. · Zbl 1291.81245
[126] S. Dittmaier, Precision standard model physics, talv given at LoopFest V, June 19-21, SLAC, Stanford, U.S.A. (2006).
[127] G.P. Collins, The Large Hadron Collider: the discovery machine, Sci. Amer. (2008) 39.
[128] F. Johansson et al., mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18) (2013).
[129] D. Maclaurin, Modeling, inference and optimization with composable differentiable procedures, Ph.D. thesis, Harvard University, Cambridge, U.S.A. (2016).
[130] Davenport, PB, Rotations about nonorthogonal axes, AIAA J., 11, 853 (1973) · Zbl 0262.70003 · doi:10.2514/3.6842
[131] Wittenburg, J.; Lilov, L., Decomposition of a finite rotation into three rotations about given axes, Mult. Syst. Dyn., 9, 353 (2003) · Zbl 1074.70002 · doi:10.1023/A:1023389218547
[132] D.H. Bailey and J.M. Borwein, PSLQ: an algorithm to discover integer relations, (2009).
[133] B. de Wit and H. Nicolai, Properties of \(\mathcal{N} = 8\) supergravity, in the proceedings of the 19^thWinter School and Workshop on Theoretical Physics: Supersymmetry and Supergravity, February 14-26, Karpacz, Poland (1983).
[134] Borghese, A.; Guarino, A.; Roest, D., Triality, periodicity and stability of SO(8) gauged supergravity, JHEP, 05, 107 (2013) · Zbl 1342.83447 · doi:10.1007/JHEP05(2013)107
[135] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Cambridge Monographs on Mathematical Physics volume 150, Camrbidge University PRess, Cambridge U.K. (2012). · Zbl 1245.53003
[136] Baez, JC, The octonions, Bull. Amer. Math. Soc., 39, 145 (2001) · Zbl 1026.17001 · doi:10.1090/S0273-0979-01-00934-X
[137] Fischbacher, T., Numerical tools to validate stationary points of SO(8)-gauged N = 8 D = 4 supergravity, Comput. Phys. Commun., 183, 780 (2012) · doi:10.1016/j.cpc.2011.11.022
[138] F. Englert, Spontaneous compactification of eleven-dimensional supergravity, Phys. Lett.B 119 (1982) 339 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.