×

Discrete vector calculus and Helmholtz Hodge decomposition for classical finite difference summation by parts operators. (English) Zbl 1476.65281

Summary: In this article, discrete variants of several results from vector calculus are studied for classical finite difference summation by parts operators in two and three space dimensions. It is shown that existence theorems for scalar/vector potentials of irrotational/solenoidal vector fields cannot hold discretely because of grid oscillations, which are characterised explicitly. This results in a non-vanishing remainder associated with grid oscillations in the discrete Helmholtz Hodge decomposition. Nevertheless, iterative numerical methods based on an interpretation of the Helmholtz Hodge decomposition via orthogonal projections are proposed and applied successfully. In numerical experiments, the discrete remainder vanishes and the potentials converge with the same order of accuracy as usual in other first-order partial differential equations. Motivated by the successful application of the Helmholtz Hodge decomposition in theoretical plasma physics, applications to the discrete analysis of magnetohydrodynamic (MHD) wave modes are presented and discussed.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65Z05 Applications to the sciences
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahusborde, E.; Azaiez, M.; Caltagirone, JP, A primal formulation for the Helmholtz decomposition, J. Comput. Phys., 225, 1, 13-19 (2007) · Zbl 1201.65211 · doi:10.1016/j.jcp.2007.04.002
[2] Ahusborde, E.; Azaïez, M.; Caltagirone, JP; Gerritsma, M.; Lemoine, A., Discrete Hodge Helmholtz decomposition, Monografías Matemáticas García de Galdeano, 39, 1-10 (2014) · Zbl 1360.76077
[3] Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823-864 (1998). 10.1002/(SICI)1099-1476(199806). 21:\(9<823\)::AID-MMA \(976>3.0\).CO;2-B · Zbl 0914.35094
[4] Angot, P.; Caltagirone, JP; Fabrie, P., Fast discrete Helmholtz-Hodge decompositions in bounded domains, Appl. Math. Lett., 26, 4, 445-451 (2013) · Zbl 1261.65126 · doi:10.1016/j.aml.2012.11.006
[5] Beresnyak, A., Lazarian, A.: Turbulence in magnetohydrodynamics. Stud. Math. Phys. 12. Walter de Gruyter GmbH & Co KG (2019) · Zbl 1416.76002
[6] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65-98 (2017). 10.1137/141000671. arxiv:1411.1607 [cs.MS] · Zbl 1356.68030
[7] Bhatia, H.; Norgard, G.; Pascucci, V.; Bremer, PT, The Helmholtz-Hodge decomposition - A survey, IEEE Trans. Visual Comput. Graphics, 19, 8, 1386-1404 (2012) · doi:10.1109/TVCG.2012.316
[8] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J. Comput. Phys., 362, 346-374 (2018) · Zbl 1391.76310 · doi:10.1016/j.jcp.2018.02.033
[9] Estrin, R.; Orban, D.; Saunders, MA, LSLQ: an iterative method for linear least-squares with an error minimization property, SIAM J. Matrix Anal. Appl., 40, 1, 254-275 (2019) · Zbl 1451.65028 · doi:10.1137/17M1113552
[10] Fernandes, P.; Gilardi, G., Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., 7, 7, 957-991 (1997) · Zbl 0910.35123 · doi:10.1142/S0218202597000487
[11] Fernández, D.C.D.R., Boom, P.D., Carpenter, M.H., Zingg, D.W.: Extension of tensor-product generalized and dense-norm summation-by-parts operators to curvilinear coordinates. J. Sci. Comput. 80(3), 1957-1996 (2019). 10.1007/s10915-019-01011-3 · Zbl 1428.65004
[12] Fernández, DCDR; Boom, PD; Zingg, DW, A generalized framework for nodal first derivative summation-by-parts operators, J. Comput. Phys., 266, 214-239 (2014) · Zbl 1311.65002 · doi:10.1016/j.jcp.2014.01.038
[13] Fernández, DCDR; Hicken, JE; Zingg, DW, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95, 171-196 (2014) · Zbl 1390.65064 · doi:10.1016/j.compfluid.2014.02.016
[14] Fisher, TC; Carpenter, MH, High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293 · doi:10.1016/j.jcp.2013.06.014
[15] Fong, DCL; Saunders, MA, LSMR: an iterative algorithm for sparse least-squares problems, SIAM J. Sci. Comput., 33, 5, 2950-2971 (2011) · Zbl 1232.65052 · doi:10.1137/10079687X
[16] Gao, L.; Fernández, DCDR; Carpenter, M.; Keyes, D., SBP-SAT finite difference discretization of acoustic wave equations on staggered block-wise uniform grids, J. Comput. Appl. Math., 348, 421-444 (2019) · Zbl 1412.65075 · doi:10.1016/j.cam.2018.08.040
[17] Gassner, GJ, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065 · doi:10.1137/120890144
[18] Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin Heidelberg (2012). 10.1007/978-3-642-61623-5 · Zbl 0585.65077
[19] Glaßmeier, KH, Reflection of MHD-waves in the pc4-5 period range at ionospheres with non-uniform conductivity distributions, Geophys. Res. Lett., 10, 8, 678-681 (1983) · doi:10.1029/GL010i008p00678
[20] Glaßmeier, KH, On the influence of ionospheres with non-uniform conductivity distribution on hydromagnetic waves, J. Geophys., 54, 125-137 (1984)
[21] Glaßmeier, KH, Reconstruction of the ionospheric influence on ground-based observations of a short-duration ULF pulsation event, Planet. Space Sci., 36, 8, 801-817 (1988) · doi:10.1016/0032-0633(88)90086-4
[22] Glaßmeier, KH; Othmer, C.; Cramm, R.; Stellmacher, M.; Engebretson, M., Magnetospheric field line resonances: a comparative planetology approach, Surv. Geophys., 20, 1, 61-109 (1999) · doi:10.1023/A:1006659717963
[23] Hicken, JE; Zingg, DW, Summation-by-parts operators and high-order quadrature, J. Comput. Appl. Math., 237, 1, 111-125 (2013) · Zbl 1263.65025 · doi:10.1016/j.cam.2012.07.015
[24] Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2007). 10.2514/6.2007-4079
[25] Hyman, JM; Shashkov, M., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Comput. Math. Appl., 33, 4, 81-104 (1997) · Zbl 0868.65006 · doi:10.1016/S0898-1221(97)00009-6
[26] Hyman, JM; Shashkov, M., The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal., 36, 3, 788-818 (1999) · Zbl 0972.65077 · doi:10.1137/S0036142996314044
[27] Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin Heidelberg (1994). 10.1007/978-3-642-84659-5 · Zbl 0838.35001
[28] Kowal, G.; Lazarian, A., Velocity field of compressible magnetohydrodynamic turbulence: wavelet decomposition and mode scalings, Astrophys J., 720, 1, 742-756 (2010) · doi:10.1088/0004-637X/720/1/742
[29] Kreiss, HO; Scherer, G.; de Boor, C., Finite element and finite difference methods for hyperbolic partial differential equations, Mathematical Aspects of Finite Elements in Partial Differential Equations, 195-212 (1974), New York: Academic Press, New York · Zbl 0355.65085
[30] Lemoine, A.; Caltagirone, JP; Azaïez, M.; Vincent, S., Discrete Helmholtz-Hodge decomposition on polyhedral meshes using compatible discrete operators, J. Sci. Comput., 65, 1, 34-53 (2015) · Zbl 1329.65249 · doi:10.1007/s10915-014-9952-8
[31] Linders, V.; Lundquist, T.; Nordström, J., On the order of accuracy of finite difference operators on diagonal norm based summation-by-parts form, SIAM J. Numer. Anal., 56, 2, 1048-1063 (2018) · Zbl 1448.65192 · doi:10.1137/17M1139333
[32] Linders, V., Nordström, J., Frankel, S.H.: Convergence and Stability Properties of Summation-by-Parts in Time. Technical Report LiTH-MAT-R, ISSN 0348-2960; 2019:4, Linköping University, Linköping, Sweden (2019)
[33] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, 1163-1227 (2014) · Zbl 1352.65420 · doi:10.1016/j.jcp.2013.07.031
[34] Mattsson, K.; Almquist, M.; Carpenter, MH, Optimal diagonal-norm SBP operators, J. Comput. Phys., 264, 91-111 (2014) · Zbl 1349.65322 · doi:10.1016/j.jcp.2013.12.041
[35] Mattsson, K.; Almquist, M.; van der Weide, E., Boundary optimized diagonal-norm SBP operators, J. Comput. Phys., 374, 1261-1266 (2018) · Zbl 1416.65275 · doi:10.1016/j.jcp.2018.06.010
[36] Mattsson, K.; Nordström, J., Summation by parts operators for finite difference approximations of second derivatives, J. Comput. Phys., 199, 2, 503-540 (2004) · Zbl 1071.65025 · doi:10.1016/j.jcp.2004.03.001
[37] Mattsson, K.; O’Reilly, O., Compatible diagonal-norm staggered and upwind SBP operators, J. Comput. Phys., 352, 52-75 (2018) · Zbl 1375.76111 · doi:10.1016/j.jcp.2017.09.044
[38] Nordström, J.; Björck, M., Finite volume approximations and strict stability for hyperbolic problems, Appl. Numer. Math., 38, 3, 237-255 (2001) · Zbl 0985.65103 · doi:10.1016/S0168-9274(01)00027-7
[39] Nordström, J.; Forsberg, K.; Adamsson, C.; Eliasson, P., Finite volume methods, unstructured meshes and strict stability for hyperbolic problems, Appl. Numer. Math., 45, 4, 453-473 (2003) · Zbl 1019.65066 · doi:10.1016/S0168-9274(02)00239-8
[40] O’Reilly, O.; Lundquist, T.; Dunham, EM; Nordström, J., Energy stable and high-order-accurate finite difference methods on staggered grids, J. Comput. Phys., 346, 572-589 (2017) · Zbl 1380.65173 · doi:10.1016/j.jcp.2017.06.030
[41] Paige, CC; Saunders, MA, Algorithm 583 LSQR: sparse linear equations and least squares problems, ACM Trans. Math. Softw. (TOMS), 8, 2, 195-209 (1982) · doi:10.1145/355993.356000
[42] Paige, CC; Saunders, MA, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw. (TOMS), 8, 1, 43-71 (1982) · Zbl 0478.65016 · doi:10.1145/355984.355989
[43] Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85-133 (2017). 10.1007/s13137-016-0089-9. arxiv:1609.08029 [math.NA] · Zbl 1432.65156
[44] Ranocha, H.: Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives. BIT Numer. Math. 59(2), 547-563 (2019). 10.1007/s10543-018-0736-7. arxiv:1805.09126 [math.NA] · Zbl 1482.65151
[45] Ranocha, H.: Some notes on summation by parts time integration methods. Results Appl. Math. 1, 100004 (2019). 10.1016/j.rinam.2019.100004. arxiv:1901.08377 [math.NA] · Zbl 1453.65161
[46] Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299-328 (2016). 10.1016/j.jcp.2016.02.009. arxiv:1511.02052 [math.NA] · Zbl 1349.65524
[47] Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13-28 (2017). 10.1016/j.jcp.2017.04.044. arxiv:1511.08408 [math.NA] · Zbl 1380.65318
[48] Ranocha, H., Ostaszewski, K., Heinisch, P.: Numerical methods for the magnetic induction equation with hall effect and projections onto divergence-free vector fields (2018). Submitted. arxiv:1810.01397 [math.NA]
[49] Ranocha, H., Ostaszewski, K., Heinisch, P.: \(2019\_\) SBP \(\_\) vector \(\_\) calculus \(\_\) REPRO. Discrete vector calculus and Helmholtz Hodge decomposition for classical finite difference summation by parts operators. https://github.com/IANW-Projects/2019_SBP_vector_calculus_REPRO (2019). 10.5281/zenodo.3375170
[50] Schnack, D.D.: Lectures in Magnetohydrodynamics with an Appendix on Extended MHD. Springer, Berlin Heidelberg (2009). 10.1007/978-3-642-00688-3 · Zbl 1178.76001
[51] Schweizer, B.: On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. In: E. Rocca, U. Stefanelli, L. Truskinovsky, A. Visintin (eds.) Trends in Applications of Mathematics to Mechanics, Springer INdAM Series, vol. 27, pp. 65-79. Springer, Cham (2018). 10.1007/978-3-319-75940-1_4 · Zbl 1411.31007
[52] Silberman, ZJ; Adams, TR; Faber, JA; Etienne, ZB; Ruchlin, I., Numerical generation of vector potentials from specified magnetic fields, J. Comput. Phys., 379, 421-437 (2019) · Zbl 07581580 · doi:10.1016/j.jcp.2018.12.006
[53] Sims, J.; Giorgi, M.; Oliveira, M.; Meneghetti, J.; Gutierrez, M., Directional analysis of cardiac motion field from gated fluorodeoxyglucose PET images using the discrete Helmholtz Hodge decomposition, Comput. Med. Imaging Graph., 65, 69-78 (2018) · doi:10.1016/j.compmedimag.2017.06.004
[54] Sjögreen, B., Yee, H.C., Kotov, D.: Skew-symmetric splitting and stability of high order central schemes. J. Phys. Conf. Ser. vol. 837, p. 012019. IOP Publishing (2017). 10.1088/1742-6596/837/1/012019
[55] Strand, B., Summation by parts for finite difference approximations for \(\text{d/d}x\), J. Comput. Phys., 110, 1, 47-67 (1994) · Zbl 0792.65011 · doi:10.1006/jcph.1994.1005
[56] Svärd, M., On coordinate transformations for summation-by-parts operators, J. Sci. Comput., 20, 1, 29-42 (2004) · Zbl 1057.65054 · doi:10.1023/A:1025881528802
[57] Svärd, M., A note on \(L^\infty\) bounds and convergence rates of summation-by-parts schemes, BIT Numer. Math., 54, 3, 823-830 (2014) · Zbl 1306.65256 · doi:10.1007/s10543-014-0471-7
[58] Svärd, M.; Nordström, J., On the order of accuracy for difference approximations of initial-boundary value problems, J. Comput. Phys., 218, 1, 333-352 (2006) · Zbl 1123.65088 · doi:10.1016/j.jcp.2006.02.014
[59] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336 · doi:10.1016/j.jcp.2014.02.031
[60] Svärd, M., Nordström, J.: On the Convergence Rates of Energy-Stable Finite-Difference Schemes. Technical Report LiTH-MAT-R-2017/14-SE, Linköping University, Linköping, Sweden (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.