Noii, Nima; Khodadadian, Amirreza; Wick, Thomas Bayesian inversion for anisotropic hydraulic phase-field fracture. (English) Zbl 1507.74408 Comput. Methods Appl. Mech. Eng. 386, Article ID 114118, 37 p. (2021). Summary: In this work, we employ a Bayesian inversion framework to fluid-filled phase-field fracture. We develop a robust and efficient numerical algorithm for hydraulic phase-field fracture toward transversely isotropic and orthotropy anisotropic fracture. In the fluid-driven coupled problem, three primary fields for pressure, displacements, and the crack phase-field are solved while direction-dependent responses (due to the preferred fiber orientation) are enforced via penalty-like parameters. A new crack driving state function is introduced by avoiding the compressible part of anisotropic energy to be degraded. Next, we use a successful extension of the anisotropic hydraulic phase-field fracture as a departure point for Bayesian inversion to estimate material parameters. To this end, we employ the delayed rejection adaptive Metropolis-Hastings (DRAM) algorithm to identify the parameters. The focus is on uncertainties arising from different variables, including elasticity modulus, Biot’s coefficient, Biot’s modulus, dynamic fluid viscosity and Griffith’s energy release rate in the case of the isotopic hydraulic fracture while in the anisotropic setting, we will have additional penalty-like parameters to be identified. Several numerical examples substantiate our algorithmic developments. Cited in 2 Documents MSC: 74R10 Brittle fracture 74S05 Finite element methods applied to problems in solid mechanics 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 76S05 Flows in porous media; filtration; seepage Keywords:phase-field approach; hydraulic fracture; fluid-saturated porous media; anisotropic materials; Bayesian inference; DRAM algorithm Software:ParaDRAM; IPACS PDF BibTeX XML Cite \textit{N. Noii} et al., Comput. Methods Appl. Mech. Eng. 386, Article ID 114118, 37 p. (2021; Zbl 1507.74408) Full Text: DOI arXiv References: [1] Lewis, R.; Schrefler, B., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1999), Wiley [2] Coussy, O., Poromechanics (2004), John Wiley & Sons [3] Perkins, T.; Kern, L., Widths of hydraulic fractures, J. Pet. Technol., 13, 09, 937-949 (1961) [4] Nordgren, R., Propagation of a vertical hydraulic fracture, Soc. Pet. Eng. J., 12, 04, 306-314 (1972) [5] Kiparsky, M.; Hein, J. F., Regulation of hydraulic fracturing in california: A wastewater and water quality perspective, BerkeleyLaw (2013) [6] Ghassemi, A.; Kumar, G., Changes in fracture aperture and fluid pressure due to thermal stress and silica dissolution/precipitation induced by heat extraction from subsurface rocks, Geothermics, 36, 115-140 (2006) [7] McClure, M. W.; Horne, R. N., An investigation of stimulation mechanisms in enhanced geothermal systems, Int. J. Rock Mech. Min. Sci., 72, 242-260 (2014) [8] de Pater, C. H.; Shaoul, J. R., Stimulation for geothermal wells in the netherlands, Neth. J. Geosci., 98, Article e11 pp. (2019) [9] Bock, H.; Dehandschutter, B.; Martin, C. D.; Mazurek, M.; De Haller, A.; Skoczylas, F.; Davy, C., Self-Sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste (2010), OECD and NEA [10] Böger, L.; Keip, M.-A.; Miehe, C., Minimization and saddle-point principles for the phase-field modeling of fracture in hydrogels, Comput. Mater. Sci., 138, 474-485 (2017) [11] Ferrara, A.; Pandolfi, A., Numerical modelling of fracture in human arteries, Comput. Methods Biomech. Biomed. Eng., 11, 5, 553-567 (2008) [12] Gültekin, O.; Dal, H.; Holzapfel, G., A phase-field approach to model fracture of arterial walls: theory and finite element analysis, Comput. Methods Appl. Mech. Engrg., 312, 542-566 (2016) · Zbl 1439.74198 [13] Moosavi, S., Initiation and Propagation of Fractures in Anisotropic Media, Taking into Account Hydro-Mechanical Couplings (2018), Université de Lorraine, (Ph.D. thesis) [14] Haario, H.; Laine, M.; Mira, A.; Saksman, E., DRAM: efficient adaptive MCMC, Stat. Comput., 16, 4, 339-354 (2006) [15] Kuila, U.; Dewhurst, D.; Siggins, A.; Raven, M., Stress anisotropy and velocity anisotropy in low porosity shale, Tectonophysics, 503, 1-2, 34-44 (2011) [16] Goral, J.; Panja, P.; Deo, M.; Andrew, M.; Linden, S.; Schwarz, J.-O.; Wiegmann, A., Confinement effect on porosity and permeability of shales, Sci. Rep., 10, 1, 1-11 (2020) [17] He, J.; Afolagboye, L. O.; Lin, C.; Wan, X., An experimental investigation of hydraulic fracturing in shale considering anisotropy and using freshwater and supercritical CO2, Energies, 11, 3, 557 (2018) [18] Hu, Y.; Li, Z.; Zhao, J.; Tao, Z.; Gao, P., Prediction and analysis of the stimulated reservoir volume for shale gas reservoirs based on rock failure mechanism, Environ. Earth Sci., 76, 15, 546 (2017) [19] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060 [20] Bourdin, B.; Francfort, G.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 5-148 (2008) · Zbl 1176.74018 [21] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057 [22] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014 [23] Li, B.; Peco, C.; Millán, D.; Arias, I.; Arroyo, M., Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, Internat. J. Numer. Methods Engrg., 102, 3-4, 711-727 (2015) · Zbl 1352.74290 [24] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M.-A., Phase field modeling of fracture in anisotropic brittle solids, Int. J. Non-Linear Mech., 97, 1-21 (2017) [25] Gültekin, O.; Dal, H.; Holzapfel, G. A., Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model, Comput. Methods Appl. Mech. Engrg., 331, 23-52 (2018) · Zbl 1439.74199 [26] Zhang, X.; Sloan, S. W.; Vignes, C.; Sheng, D., A modification of the phase-field model for mixed mode crack propagation in rock-like materials, Comput. Methods Appl. Mech. Engrg., 322, 123-136 (2017) · Zbl 1439.74188 [27] Noii, N.; Aldakheel, F.; Wick, T.; Wriggers, P., An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture, Comput. Methods Appl. Mech. Engrg., 361, Article 112744 pp. (2020) · Zbl 1442.74213 [28] Bourdin, B.; Chukwudozie, C.; Yoshioka, K., A variational approach to the numerical simulation of hydraulic fracturing, SPE J. (2012), Conference Paper 159154-MS [29] Mikelić, A.; Wheeler, M.; Wick, T., Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM - Int. J. Geomath., 10, 1 (2019) · Zbl 1419.74216 [30] Wheeler, M.; Wick, T.; Wollner, W., An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85 (2014) · Zbl 1296.65170 [31] Singh, N.; Verhoosel, C.; van Brummelen, E., Finite element simulation of pressure-loaded phase-field fractures, Meccanica, 53, 6, 1513-1545 (2018) · Zbl 1390.74169 [32] Noii, N.; Wick, T., A phase-field description for pressurized and non-isothermal propagating fractures, Comput. Methods Appl. Mech. Engrg., 351, 860-890 (2019) · Zbl 1441.74213 [33] Chukwudozie, C.; Bourdin, B.; Yoshioka, K., A variational phase-field model for hydraulic fracturing in porous media, Comput. Methods Appl. Mech. Engrg., 347, 957-982 (2019) · Zbl 1440.74121 [34] Lee, S.; Wheeler, M. F.; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Engrg., 305, 111-132 (2016) · Zbl 1425.74419 [35] Lee, S.; Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of proppant-filled fractures in a poroelastic medium, Comput. Methods Appl. Mech. Engrg., 312, 509-541 (2016) · Zbl 1439.74359 [36] Mikelić, A.; Wheeler, M. F.; Wick, T., A quasi-static phase-field approach to pressurized fractures, Nonlinearity, 28, 5, 1371-1399 (2015) · Zbl 1316.35287 [37] Mikelić, A.; Wheeler, M. F.; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, SIAM Multisc. Model. Simul., 13, 1, 367-398 (2015) · Zbl 1317.74028 [38] Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of a fluid-driven fracture in a poroelastic medium, Comput. Geosci., 19, 6, 1171-1195 (2015) · Zbl 1390.86010 [39] Wick, T.; Singh, G.; Wheeler, M. F., Fluid-filled fracture propagation using a phase-field approach and coupling to a reservoir simulator, SPE J., 21, 03, 981-999 (2016) [40] Wilson, Z. A.; Landis, C. M., Phase-field modeling of hydraulic fracture, J. Mech. Phys. Solids, 96, 264-290 (2016) · Zbl 1482.74020 [41] Miehe, C.; Mauthe, S.; Teichtmeister, S., Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture, J. Mech. Phys. Solids, 82, 186-217 (2015) [42] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423 [43] Ehlers, W.; Luo, C., A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Comput. Methods Appl. Mech. Engrg., 315, 348-368 (2017) · Zbl 1439.74107 [44] Heider, Y.; Sun, W., A phase field framework for capillary-induced fracture in unsaturated porous media: Drying-induced vs. hydraulic cracking, Comput. Methods Appl. Mech. Engrg., 359, Article 112647 pp. (2020) · Zbl 1441.74205 [45] Heider, Y.; Reiche, S.; Siebert, P.; Markert, B., Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data, Eng. Fract. Mech., 202, 116-134 (2018) [46] Lee, S.; Min, B.; Wheeler, M. F., Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled with genetic algorithm, Comput. Geosci., 22, 3, 833-849 (2018) · Zbl 1405.76055 [47] Wang, K.; Sun, W., A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput. Methods Appl. Mech. Engrg., 318, 1-32 (2017) · Zbl 1439.74373 [48] Cajuhi, T.; Sanavia, L.; De Lorenzis, L., Phase-field modeling of fracture in variably saturated porous media, Comput. Mech., 61, 3, 299-318 (2018) · Zbl 1458.74125 [49] Lee, S.; Wheeler, M. F.; Wick, T.; Srinivasan, S., Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks, Mech. Res. Commun., 80, 16-23 (2017), Multi-Physics of Solids at Fracture [50] Zhou, S.; Zhuang, X.; Rabczuk, T., A phase-field modeling approach of fracture propagation in poroelastic media, Eng. Geol., 240, 189-203 (2018) [51] Zhou, S.; Zhuang, X.; Rabczuk, T., Phase-field modeling of fluid-driven dynamic cracking in porous media, Comput. Methods Appl. Mech. Engrg., 350, 169-198 (2019) · Zbl 1441.74222 [52] Heister, T.; Wheeler, M.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239 [53] Abbaszadeh, M.; Dehghan, M.; Khodadadian, A.; Noii, N.; Heitzinger, C.; Wick, T., A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier-Stokes equations coupled with a heat transfer equation: Nonstationary incompressible Boussinesq equations, J. Comput. Phys., 426, Article 109875 pp. (2021) · Zbl 07510038 [54] Aldakheel, F.; Noii, N.; Wick, T.; Wriggers, P., A global-local approach for hydraulic phase-field fracture in poroelastic media, Comput. Math. Appl. (2020) [55] Geelen, R.; Plews, J.; Tupek, M.; Dolbow, J., An extended/generalized phase-field finite element method for crack growth with global-local enrichment, Internat. J. Numer. Methods Engrg., 121, 11, 2534-2557 (2020) [56] Heister, T.; Wick, T., Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems, PAMM, 18, 1, Article e201800353 pp. (2018) [57] Jodlbauer, D.; Langer, U.; Wick, T., Parallel matrix-free higher-order finite element solvers for phase-field fracture problems, Math. Comput. Appl., 25, 3, 40 (2020) · Zbl 1506.74355 [58] Lee, S.; Mikelic, A.; Wheeler, M.; Wick, T., Phase-field modeling of two phase fluid filled fractures in a poroelastic medium, Multiscale Model. Simul., 16, 4, 1542-1580 (2018) · Zbl 1401.74084 [59] Bourdin, B.; Francfort, G. A., Past and present of variational fracture, SIAM News, 52, 9 (2019) [60] Wheeler, M. F.; Wick, T.; Lee, S., IPACS: Integrated phase-field advanced crack propagation simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media, Comput. Methods Appl. Mech. Engrg., 367, Article 113124 pp. (2020) · Zbl 1442.74216 [61] Diehl, P.; Lipton, R.; Wick, T.; Tyagi, M., A comparative review of peridynamics and phase-field models for engineering fracture mechanics (2021) [62] Wick, T., (Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers, Radon Series on Computational and Applied Mathematics, vol. 28 (2020), de Gruyter) · Zbl 1448.74003 [63] Shahmoradi, A.; Bagheri, F., Paradram: A cross-language toolbox for parallel high-performance delayed-rejection adaptive metropolis Markov chain Monte Carlo simulations (2020), arXiv preprint arXiv:2008.09589 [64] Adeli, E.; Rosić, B.; Matthies, H. G.; Reinstädler, S., Effect of load path on parameter identification for plasticity models using Bayesian methods, (Quantification of Uncertainty: Improving Efficiency and Technology (2020), Springer), 1-13 · Zbl 1455.62223 [65] Rappel, H.; Beex, L. A.; Hale, J. S.; Noels, L.; Bordas, S., A tutorial on Bayesian inference to identify material parameters in solid mechanics, Arch. Comput. Methods Eng., 27, 2, 361-385 (2020) [66] Emerick, A. A.; Reynolds, A. C., Combining the ensemble Kalman filter with Markov-chain Monte Carlo for improved history matching and uncertainty characterization, Spe Journal, 17, 02, 418-440 (2012) [67] Andrieu, C.; Moulines, E., On the ergodicity properties of some adaptive MCMC algorithms, Ann. Appl. Probab., 16, 3, 1462-1505 (2006) · Zbl 1114.65001 [68] Adeli, E.; Rosić, B.; Matthies, H. G.; Reinstädler, S.; Dinkler, D., Comparison of Bayesian methods on parameter identification for a viscoplastic model with damage, Metals, 10, 7, 876 (2020) [69] Noii, N.; Aghayan, I., Characterization of elastic-plastic coated material properties by indentation techniques using optimisation algorithms and finite element analysis, Int. J. Mech. Sci., 152, 465-480 (2019) [70] Smith, R. C., Uncertainty Quantification: Theory, Implementation, and Applications, Vol. 12 (2013), Siam [71] Khodadadian, A.; Noii, N.; Parvizi, M.; Abbaszadeh, M.; Wick, T.; Heitzinger, C., A Bayesian estimation method for variational phase-field fracture problems, Comput. Mech., 66, 827-849 (2020) · Zbl 1462.74139 [72] Haario, H.; Saksman, E.; Tamminen, J., Adaptive proposal distribution for random walk Metropolis algorithm, Comput. Statist., 14, 3, 375-396 (1999) · Zbl 0941.62036 [73] Green, P. J.; Mira, A., Delayed rejection in reversible jump Metropolis-Hastings, Biometrika, 88, 4, 1035-1053 (2001) · Zbl 1099.60508 [74] Khodadadian, A.; Stadlbauer, B.; Heitzinger, C., BayesIan inversion for nanowire field-effect sensors, J. Comput. Electron., 19, 1, 147-159 (2020) [75] Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-ol Ajdad, A.; Kalantarinejad, R.; Heitzinger, C., A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters, Biosens. Bioelectron., 142, Article 111527 pp. (2019) [76] Solonen, A.; Ollinaho, P.; Laine, M.; Haario, H.; Tamminen, J.; Järvinen, H., Efficient MCMC for climate model parameter estimation: Parallel adaptive chains and early rejection, Bayesian Anal., 7, 3, 715-736 (2012) · Zbl 1330.60091 [77] Crews, J. H.; McMahan, J. A.; Smith, R. C.; Hannen, J. C., Quantification of parameter uncertainty for robust control of shape memory alloy bending actuators, Smart Mater. Struct., 22, 11, Article 115021 pp. (2013) [78] Lu, H.; Shen, Q.; Chen, J.; Wu, X.; Fu, X., Parallel multiple-chain DRAM MCMC for large-scale geosteering inversion and uncertainty quantification, J. Pet. Sci. Eng., 174, 189-200 (2019) [79] Elsheikh, A. H.; Hoteit, I.; Wheeler, M. F., Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates, Comput. Methods Appl. Mech. Engrg., 269, 515-537 (2014) [80] Blaheta, R.; Béreš, M.; Domesová, S.; Horák, D., BayesIan inversion for steady flow in fractured porous media with contact on fractures and hydro-mechanical coupling, Comput. Geosci., 1-22 (2020) · Zbl 1452.76230 [81] Kikuchi, N.; Oden, J., (Contact Problems in Elasticity. Contact Problems in Elasticity, Studies in Applied Mathematics (1988), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA) · Zbl 0685.73002 [82] Kinderlehrer, D.; Stampacchia, G., (An Introduction to Variational Inequalities and their Applications. An Introduction to Variational Inequalities and their Applications, Classics in Applied Mathematics (2000), Society for Industrial and Applied Mathematics) · Zbl 0988.49003 [83] Holzapfel, A. G., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000), John Wiley & Sons, Inc. · Zbl 0980.74001 [84] Biot, M., Theory of finite deformations of pourous solids, Indiana Univ. Math. J., 21, 597-620 (1972) · Zbl 0218.76090 [85] Coussy, O., Mechanics of Porous Continua (1995), Wiley [86] Markert, B., A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua, Transp. Porous Media, 70, 3, 427 (2007) [87] Nguyen, T. T.; Yvonnet, J.; Zhu, Q.-Z.; Bornert, M.; Chateau, C., A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography, Comput. Methods Appl. Mech. Engrg., 312, 567-595 (2016) · Zbl 1439.74243 [88] Wilson, Z. A.; Landis, C. M., Phase-field modeling of hydraulic fracture, J. Mech. Phys. Solids, 96, 264-290 (2016) · Zbl 1482.74020 [89] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022 [90] Mauthe, S.; Miehe, C., Hydraulic fracture in poro-hydro-elastic media, Mech. Res. Commun., 80, 69-83 (2017) [91] K. Terzaghi, Theoretical Soil Mechanics, New York, 1943, pp. 11-15. [92] De Boer, R.; Ehlers, W., The development of the concept of effective stresses, Acta Mech., 83, 1-2, 77-92 (1990) · Zbl 0724.73195 [93] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423 [94] Xia, L.; Yvonnet, J.; Ghabezloo, S., Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media, Eng. Fract. Mech., 186, 158-180 (2017) [95] Smith, A. F.; Roberts, G. O., BayesIan computation via the gibbs sampler and related Markov chain Monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol., 55, 1, 3-23 (1993) · Zbl 0779.62030 [96] Zuev, K.; Katafygiotis, L., Modified Metropolis-Hastings algorithm with delayed rejection, Probab. Eng. Mech., 26, 3, 405-412 (2011) [97] Giancoli, D. C., Physics: Principles with Applications, Vol. 4 (2005), Pearson/Prentice Hall Upper Saddle River, NJ [98] Callister, W. D.; Rethwisch, D. G., Materials Science and Engineering: An Introduction, Vol. 9 (2018), Wiley New York [99] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01 [100] Golovin, S. V.; Baykin, A. N., Influence of pore pressure on the development of a hydraulic fracture in poroelastic medium, Int. J. Rock Mech. Min. Sci., 108, 198-208 (2018) [101] Cheng, A.-D., Material coefficients of anisotropic poroelasticity, Int. J. Rock Mech. Min. Sci., 34, 2, 199-205 (1997) [102] Jelitto, H.; Schneider, G. A., A geometric model for the fracture toughness of porous materials, Acta Mater., 151, 443-453 (2018) [103] Cheng, Y.; Zhang, Y., Experimental study of fracture propagation: The application in energy mining, Energies, 13, 6, 1411 (2020) [104] Heider, Y.; Reiche, S.; Siebert, P.; Markert, B., Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data, Eng. Fract. Mech., 202, 116-134 (2018) [105] Sarmadivaleh, M., Experimental and numerical study of interaction of a pre-existing natural interface and an induced hydraulic fracture (2012), Curtin University, (Ph.D. thesis) [106] Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of a fluid-driven fracture in a poroelastic medium, Comput. Geosci., 19, 6, 1171-1195 (2015) · Zbl 1390.86010 [107] Lee, S.; Mikelic, A.; Wheeler, M. F.; Wick, T., Phase-field modeling of two phase fluid filled fractures in a poroelastic medium, Multiscale Model. Simul., 16, 4, 1542-1580 (2018) · Zbl 1401.74084 [108] Zhou, S.; Zhuang, X., Phase field modeling of hydraulic fracture propagation in transversely isotropic poroelastic media, Acta Geotech., 1-20 (2020) [109] Yoshioka, K.; Naumov, D.; Kolditz, O., On crack opening computation in variational phase-field models for fracture, Comput. Methods Appl. Mech. Engrg., 369, Article 113210 pp. (2020) · Zbl 1506.74027 [110] Wick, T., Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers, Vol. 28 (2020), Walter de Gruyter GmbH & Co KG · Zbl 1448.74003 [111] Buljac, A.; Trejo Navas, V.-M.; Shakoor, M.; Bouterf, A.; Neggers, J.; Bernacki, M.; Bouchard, P.-O.; Morgeneyer, T. F.; Hild, F., On the calibration of elastoplastic parameters at the microscale via X-ray microtomography and digital volume correlation for the simulation of ductile damage, Eur. J. Mech. A Solids, 72, 287-297 (2018) [112] Bardsley, J. M., MCMC-Based image reconstruction with uncertainty quantification, SIAM J. Sci. Comput., 34, 3, A1316-A1332 (2012) · Zbl 1246.15022 [113] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1987), North-Holland: North-Holland Amsterdam [u.a.] [114] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.