Bunnett, Dominic; Keneshlou, Hanieh Determinantal representations of the cubic discriminant. (English) Zbl 1451.14167 Matematiche 75, No. 2, 489-505 (2020). Summary: We compute and study two determinantal representations of the discriminant of a cubic quaternary form. The first representation is the Chow form of the 2-uple embedding of \(\mathbb{P}^3\) and is computed as the Pfaffian of the Chow form of a rank 2 Ulrich bundle on this Veronese variety. We then consider the determinantal representation described by [E. J. Nanson, Proc. R. Soc. Edinburgh 22, 353–358 (1899; JFM 30.0161.09)]. We investigate the geometric nature of cubic surfaces whose discriminant matrices satisfy certain rank conditions. As a special case of interest, we use certain minors of this matrix to suggest equations vanishing on the locus of \(k\)-nodal cubic surfaces. MSC: 14Q10 Computational aspects of algebraic surfaces 14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli 14M12 Determinantal varieties Keywords:resultants; discriminant; Chow form; Tate resolution; Ulrich bundles Citations:JFM 30.0161.09 Software:Macaulay2; CubicSurfaces; DetRepOfCubicDiscriminant.m2; GitHub PDF BibTeX XML Cite \textit{D. Bunnett} and \textit{H. Keneshlou}, Matematiche 75, No. 2, 489--505 (2020; Zbl 1451.14167) Full Text: DOI arXiv References: [1] A. A. Be˘ılinson, Coherent sheaves onPnand problems in linear algebra, Funktsional. Anal. i Prilozhen.12no. 3 (1978) 68-69. [2] I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand,Algebraic vector bundles onPnand problems of linear algebra, Funktsional. Anal. i Prilozhen.12no. 3 (1978) 66-67. [3] D. Bunnett, H. Keneshlou,DetRepOfCubicDiscriminant.m2, a Macaulay2 file, 2019, available athttps://github.com/Hanieh14/CubicSurfaces/blob/ master/DetRepOfCubicDiscriminant.m2 [4] D. Bunnett, H. Keneshlou,https://github.com/Hanieh14/CubicSurfaces [5] W. L. Edge,The discriminant of a cubic surface, Proc. Roy. Irish Acad. Sect. A. 80no. 1 (1980) 75-78. · Zbl 0436.51018 [6] D. Eisenbud, G. Fløystad, F.-O. Schreyer,Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc.355no. 11 (2003) 4397—4426. · Zbl 1063.14021 [7] D. Eisenbud, F.-O. Schreyer, and an appendix by J. Weyman,Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc.16(2003) 537—579. · Zbl 1069.14019 [8] D. Eisenbud, F.-O. Schreyer,Relative Beilinson Monad and Direct Image for Families of Coherent Sheaves, Trans. Amer. Math. Soc. 360 (2008), no. 10, 53675396. · Zbl 1154.14012 [9] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkh¨auser Boston 1994. · Zbl 0827.14036 [10] A. Grothendieck, A letter to Mumford available at 2 October, 1962,https: //webusers.imj-prg.fr/ leila.schneps/grothendieckcircle/ Letters/AGMumford.pdf. [11] D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available athttp://www.math.uiuc.edu/Macaulay2/. [12] R. Hartshorne,Algebraic Geometry,Springer-Verlag, New York-Heidelberg 1977. · Zbl 0367.14001 [13] L. Kastner, R. L¨owe,The Newton polytope of the discriminant of a cubic quaternary form, this volume. [14] F.F. Knudsen, D. Mumford,The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand.39(1976) 19—55. · Zbl 0343.14008 [15] E.J. Nanson,On the Eliminant of a Set of Quadrics, Ternary or Quaternary, Proc. Royal Soc. Edinburgh22(1899) 353-358. · JFM 30.0161.09 [16] K. Ranestad, B. Sturmfels,Twenty-seven questions about the cubic surface, this volume. · Zbl 1253.14055 [17] J.V. Rennemo,Universal polynomials for tautological integrals on Hilbert schemes, Geom. Topol.21no. 1 (2017) 253-314. · Zbl 1387.14029 [18] G. Salmon,On quaternary cubics, Phil Trans. R. Soc. 150,229-239. [19] Y.-J. Tzeng,Enumeration of singular varieties with tangency conditions, (2017), arXiv:1703.02513v1. [20] I. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.