×

A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear dose-response data. (English) Zbl 1453.62138

Summary: To estimate a summarized dose-response relation across different exposure levels from epidemiologic data, meta-analysis often needs to take into account heterogeneity across studies beyond the variation associated with fixed effects. We extended a generalized-least-squares method and a multivariate maximum likelihood method to estimate the summarized nonlinear dose-response relation taking into account random effects. These methods are readily suited to fitting and testing models with covariates and curvilinear dose-response relations.

MSC:

62-08 Computational methods for problems pertaining to statistics
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

Stata; tcs; glst
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bergström, A.; Hsieh, C-C.; Lindblad, P., Obesity and renal cell cancer — A quantitative review, Br. J. Cancer, 85, 984-990 (2001)
[2] Berkey, C. S.; Hoaglin, D. C.; Antczak-Bouckoms, A., Meta-analysis of multiple outcomes by regression with random effects, Stat. Med., 17, 2537-2550 (1998)
[3] Berlin, J. A.; Longnecker, M. P.; Greenland, D., Meta-analysis of epidemiologic dose-response data, Epidemiology, 4, 218-228 (1993)
[4] Bianchi, C.; Negri, E.; La Vecchia, C., Alcohol consumption and the risk of acute myocardial infarction in women, J. Epidemiol. Community Health, 47, 308-311 (1993)
[5] Bobak, M.; Skodova, Z.; Marmot, M., Effect of beer drinking on risk of myocardial infarction: Population based case-control study, Br. Med. J., 320, 1378-1379 (2000)
[6] Castelnuova, A. D.; Rotondo, S.; Iacoviello, L., Meta-analysis of wine and beer consumption in relation to vascular risk, Circulation, 105, 2836-2844 (2002)
[7] Chêne, G.; Thompson, S. G., Methods for summarizing the risk associations of quantitative variables in epidemiologic studies in a consistent form, Am. J. Epidemiol., 144, 610-621 (1996)
[8] Corrano, G.; Bagnardi, V.; Zambon, A., A meta-analysis of alcohol consumption and the risk of 15 diseases, Prev. Med., 38, 613-619 (2004)
[9] DerSimonian, R.; Laird, N., Meta-analysis in clinical trials, Control Clin. Trials, 7, 177-188 (1986)
[10] Greenland, S.; Longnecker, M. P., Methods for trend estimation from summarized dose-response data, with applications to meta-analysis, Am. J. Epidemiol., 135, 1301-1309 (1992)
[11] Hardy, R. J.; Thompson, S. G., Detecting and describing heterogeneity in meta-analysis, Stat. Med., 17, 841-856 (1998)
[12] Hernán, M. A.; Takkouche, B.; Caamañ-Isorna, F., A meta-analysis of coffee drinking, cigarette smoking, and the risk of parkinson’s disease, Ann. Neurol., 52, 276-284 (2002)
[13] Liu, Q.; Wuu, J.; Lambe, M., Transient increase in breast cancer risk after giving birth: Postpartum period with the highest risk, Cancer Cause Control, 13, 4, 299-305 (2002)
[14] Malarcher, A. M.; Giles, W. H.; Croft, J. B., Alcohol intake, type of beverage, and the risk of cerebral infarction in young women, Stroke, 32, 77-83 (2001)
[15] National Research Council, Combing Information: Statistical Issues and Opportunities for Research (1992), National Academy Press: National Academy Press Washington, DC.
[16] Shi, J. Q.; Copas, J. B., Meta-analysis for trend estimation, Stat. Med., 23, 3-19 (2004)
[17] Sidik, K.; Jonkman, J. N., A comparison of heterogeneity variance estimators in combining results of studies, Stat. Med., 26, 1964-1981 (2007)
[18] Stram, D. O.; Lee, J. W., Variance components testing in the longitudinal mixed effects model, Biometrics, 50, 1171-1177 (1994) · Zbl 0826.62054
[19] Takkouche, B.; Cadarso-Suarez, C.; Spiegelman, D., Evaluation of old and new tests of heterogeneity in epidemiologic meta-analysis, Am. J. Epidemiol., 150, 206-215 (1999)
[20] Thompson, S. G.; Sharp, S. J., Explaining heterogeneity in meta-analysis: A comparison of methods, Stat. Med., 18, 2693-2708 (1999)
[21] Vliegenthart, R.; Oei, H. S.; van den Elzen, A. P.M., Alcohol consumption and coronary calcification in a general population, Arch. Inter. Med., 164, 2355-2360 (2004)
[22] Witte, J. S.; Greenland, S.; Kim, L. L.; Arab, L., Multilevel modeling in epidemiology with GLIMMIX, Epidemiology, 11, 684-688 (2000)
[23] Orsini, N.; Bellocco, R.; Greenland, S., Generalized least squares for trend estimation of summarized dose-response data, Stata J., 6, 40-57 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.