McLean, William Implementation of high-order, discontinuous Galerkin time stepping for fractional diffusion problems. (English) Zbl 1457.65129 ANZIAM J. 62, No. 2, 121-147 (2020). In this paper, a practical implementation of the discontinuous Galerkin method is presented for the time integration of fractional diffusion problems with the accurate evaluation of certain coefficients. The expressions for the coefficients are chosen by Legendre polynomials as the shape functions employed in the DG time stepping. It was demonstrated that the high accuracy of the DG solution can be further improved by post-processing to form the reconstruction of the solution. For a classical diffusion problem, both the solution and the post-processed solution are quasi-optimal. It was shown in numerical experiments that the superconvergence properties of DG time-stepping for classical diffusion problems carry over to the fractional-order setting. Moreover, the jumps \([[U]]^{n-1}\) in the solution provide an easily computed error estimator for automatic step-size control. Reviewer: Bülent Karasözen (Ankara) Cited in 1 Document MSC: 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 65D30 Numerical integration 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 35R11 Fractional partial differential equations Keywords:Gauss quadrature; finite-element method; Legendre polynomials; reconstruction; superconvergence Software:FractionalTimeDG.jl; GitHub PDF BibTeX XML Cite \textit{W. McLean}, ANZIAM J. 62, No. 2, 121--147 (2020; Zbl 1457.65129) Full Text: DOI arXiv OpenURL References: [1] Duffy, M. G., “Quadrature over a pyramid or cube of integrands with a singularity at a vertex”, SIAM J. Numer. Anal.19 (1962) 1260-1262; doi: doi:10.1137/0719090. · Zbl 0493.65011 [2] Eriksson, K., Johnson, C. and Thomée, V., “Time discretization of parabolic problems by the discontinuous Galerkin method”, ESAIM: M2AN19 (1985) 611-643; doi: doi:10.1051/m2an/1985190406111. · Zbl 0589.65070 [3] Hämmerlin, G. and Hoffmann, K.-H., Numerical mathematics (Springer, New York, 1962); ISBN: 978-1-4612-4442-4. [4] Klafter, J. and Sokolov, I. M., First steps in random walks (Oxford University Press, Oxford, 2011); ISBN 9780199234868. · Zbl 1242.60046 [5] Krylov, V. I., Approximate calculation of integrals, ACM Monogr. (Macmillan, New York, 1962); ISBN: 978-0-4861-5467-1. · Zbl 0111.31801 [6] Le, K-N., Mclean, W. and Stynes, M., “Existence, uniqueness and regularity of the solution of the time-fractional Fokker-Planck equation with general forcing”, Commun. Pure Appl. Anal.18 (2019) 2765-2787; doi: doi:10.3934/cpaa.2019124. [7] Makridakis, C. and Nochetto, R. H., “A posteriori error analysis for higher order dissipative methods for evolution problems”, Numer. Math.1004 (2006) 489-514; doi: doi:10.1007/s00211-006-0013-6. · Zbl 1104.65091 [8] Mclean, W., “Regularity of solutions to a time-fractional diffusion equation”, ANZIAM J.52 (2010) 123-138; doi: doi:10.1017/S1446181111000617. · Zbl 1228.35266 [9] Mclean, W., FractionalTimeDG: Generate coefficient arrays needed for discontinuous Galerkin time-stepping of fractional diffusion problems (Github,2020); https://github.com/billmclean/FractionalTimeDG.jl [10] Mclean, W. and Mustapha, K., “Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation”, Numer. Algorithms52 (2009) 69-88; doi: doi:10.1007/s11075-008-9258-8. · Zbl 1177.65194 [11] Mclean, W., Mustapha, K., Ali, R. and Knio, O., “Well-posedness of time-fractional advection-diffusion-reaction equations”, Fract. Calc. Appl. Anal.22 (2019) 918-944; doi: doi:10.1515/fca-2019-0050. · Zbl 1439.35542 [12] Metzler, R. and Klafter, J., “The random walk’s guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep.339 (2000) 1-77; doi: doi:10.1016/S0370-1573(00)00070-3. · Zbl 0984.82032 [13] Mustapha, K., “Time-stepping discontinuous Galerkin methods for fractional diffusion problems”, Numer. Math.130 (2015) 497-516; doi: doi:10.1007/s00211-014-0669-2. · Zbl 1320.65144 [14] Mustapha, K. and Mclean, W., “Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations”, SIAM J. Numer. Anal.51 (2013) 491-515; doi: doi:10.1137/120880719. · Zbl 1267.26005 [15] Oldham, K. B. and Spanier, J., The fractional calculus (Academic Press, New York, 1974); ISBN: 978-0-0809-5620-6. · Zbl 0292.26011 [16] Schmutz, L. and Wihler, T. P., “The variable-order discontinuous Galerkin time stepping scheme for parabolic evolution problems is uniformly \({L}^{\infty }\) -stable”, SIAM J. Numer. Anal.57 (2019) 293-319; doi: doi:10.1137/17M1158835. · Zbl 1415.65230 [17] Schötzau, D. and Schwab, C., “Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method”, SIAM J. Numer. Anal.38 (2001) 837-875; doi: doi:10.1137/S0036142999352394:. · Zbl 0978.65091 [18] Thomée, V., Galerkin finite element methods for parabolic problems (Springer, Berlin-Heidelberg, 2006); ISBN: 978-3-540-33121-6. · Zbl 1105.65102 [19] Weideman, J. A. C. and Trefethen, L. N., “Parabolic and hyperbolic contours for computing the Bromwich integral”, Math. Comp.76 (2007) 1341-1356; doi: doi:10.1090/S0025-5718-07-01945-X. · Zbl 1113.65119 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.