×

Scientific machine learning through physics-informed neural networks: where we are and what’s next. (English) Zbl 07568980

Summary: Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations, like Partial Differential Equations (PDE), as a component of the neural network itself. PINNs are nowadays used to solve PDEs, fractional equations, integral-differential equations, and stochastic PDEs. This novel methodology has arisen as a multi-task learning framework in which a NN must fit observed data while reducing a PDE residual. This article provides a comprehensive review of the literature on PINNs: while the primary goal of the study was to characterize these networks and their related advantages and disadvantages. The review also attempts to incorporate publications on a broader range of collocation-based physics informed neural networks, which stars form the vanilla PINN, as well as many other variants, such as physics-constrained neural networks (PCNN), variational hp-VPINN, and conservative PINN (CPINN). The study indicates that most research has focused on customizing the PINN through different activation functions, gradient optimization techniques, neural network structures, and loss function structures. Despite the wide range of applications for which PINNs have been used, by demonstrating their ability to be more feasible in some contexts than classical numerical techniques like Finite Element Method (FEM), advancements are still possible, most notably theoretical issues that remain unresolved.

MSC:

68Txx Artificial intelligence
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Qxx Partial differential equations of mathematical physics and other areas of application
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abreu, E., Florindo, J.B.: A Study on a Feedforward Neural Network to Solve Partial Differential Equations in Hyperbolic-Transport Problems. In: Paszynski M, Kranzlmüller D, Krzhizhanovskaya VV, et al (eds) Computational Science - ICCS 2021. Springer International Publishing, Cham, Lecture Notes in Comput. Sci. pp. 398-411, (2021) doi:10.1007/978-3-030-77964-1_31
[2] Aldweesh, A., Derhab, A., Emam, A.Z.: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues. Knowledge-Based Systems 189, 105,124 (2020). doi:10.1016/j.knosys.2019.105124, https://www.sciencedirect.com/science/article/pii/S0950705119304897
[3] Alkhadhr, S., Liu, X., Almekkawy, M: Modeling of the Forward Wave Propagation Using Physics-Informed Neural Networks. In: 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, (2021) doi:10.1109/IUS52206.2021.9593574, iSSN: 1948-5727
[4] Almajid, M.M., Abu-Al-Saud, M.O.: Prediction of porous media fluid flow using physics informed neural networks. J. Pet. Sci, Eng. 208, 109,205 (2022). doi:10.1016/j.petrol.2021.109205, https://www.sciencedirect.com/science/article/pii/S0920410521008597
[5] Alom, M.Z., Taha, T.M., Yakopcic, C., et al: A state-of-the-art survey on deep learning theory and architectures. Electron. 8(3) (2019). doi:10.3390/electronics8030292, https://www.mdpi.com/2079-9292/8/3/292
[6] Amini Niaki, S., Haghighat, E., Campbell, T., et al.: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture. Computer Methods in Applied Mechanics and Engineering 384, 113,959 (2021). doi:10.1016/j.cma.2021.113959, https://www.sciencedirect.com/science/article/pii/S0045782521002966 · Zbl 1506.74123
[7] Araz, J.Y., Criado, J.C., Spannowsky, M: Elvet – a neural network-based differential equation and variational problem solver (2021). arXiv:2103.14575 [hep-lat, physics:hep-ph, physics:hep-th, stat] , arXiv: 2103.14575
[8] Arnold, D.N.: Stability, Consistency, and Convergence of Numerical Discretizations, pp. 1358-1364. Springer, Berlin, Heidelberg (2015). doi:10.1007/978-3-540-70529-1_407
[9] Arnold, F., King, R: State-space modeling for control based on physics-informed neural networks. Eng. Appl. Artif. Intell. 101, 104,195 . doi:10.1016/j.engappai.2021.104195, https://www.sciencedirect.com/science/article/pii/S0952197621000427
[10] Arthurs, C.J., King, A.P.: Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the Navier-Stokes equations. J. Comput. Phys. 438:110,364 (2021). doi:10.1016/j.jcp.2021.110364, https://www.sciencedirect.com/science/article/pii/S002199912100259X · Zbl 07505959
[11] Arulkumaran, K.; Deisenroth, MP; Brundage, M., Deep Reinforcement Learning: A Brief Survey, IEEE Signal Process. Mag., 34, 6, 26-38 (2017) · doi:10.1109/MSP.2017.2743240
[12] Balu, A., Botelho, S., Khara, B., et al.: Distributed multigrid neural solvers on megavoxel domains. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Association for Computing Machinery, New York, NY, USA, SC ’21, (2021) doi:10.1145/3458817.3476218
[13] Bauer, B.: Kohler, M: On deep learning as a remedy for the curse of dimensionality in nonparametric regression. Ann. Statist. 47(4), 2261-2285 (2019). doi:10.1214/18-AOS1747, http://projecteuclid.org/journals/annals-of-statistics/volume-47/issue-4/On-deep-learning-as-a-remedy-for-the-curse-of/10.1214/18-AOS1747.full · Zbl 1421.62036
[14] Belkin, M., Hsu, D., Ma, S., et al.: Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proc. Nat. Acad. Sci. India Sect. 116(32), 15849-15854 (2019). doi:10.1073/pnas.1903070116, doi:10.1073/pnas.1903070116 · Zbl 1433.68325
[15] Bellman, R., Dynamic programming, Sci., 153, 3731, 34-37 (1966) · doi:10.1126/science.153.3731.34
[16] Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317, 28-41 (2018). doi:10.1016/j.neucom.2018.06.056, www.sciencedirect.com/science/article/pii/S092523121830794X
[17] Berman, D.S., Buczak, A.L., Chavis, J.S., et al.: A survey of deep learning methods for cyber security. Inform. 10(4) (2019). doi:10.3390/info10040122, https://www.mdpi.com/2078-2489/10/4/122
[18] Biswas, A.; Tian, J.; Ulusoy, S., Error estimates for deep learning methods in fluid dynamics, Numer. Math., 151, 3, 753-777 (2022) · Zbl 1492.35216 · doi:10.1007/s00211-022-01294-z
[19] Blechschmidt, J., Ernst, O.G.: Three ways to solve partial differential equations with neural networks - A review. GAMM-Mitteilungen 44(2), e202100,006 (2021). doi:10.1002/gamm.202100006, doi:10.1002/gamm.202100006
[20] Cai, S.; Mao, Z.; Wang, Z., Physics-informed neural networks (PINNs) for fluid mechanics: a review, Acta. Mech. Sin., 37, 12, 1727-1738 (2021) · doi:10.1007/s10409-021-01148-1
[21] Cai, S., Wang, Z., Lu, L., et al.: DeepM &Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J. Comput. Phys. 436, 110,296 (2021b). doi:10.1016/j.jcp.2021.110296, https://www.sciencedirect.com/science/article/pii/S0021999121001911 · Zbl 07513856
[22] Cai, S., Wang, Z., Wang, S., et al.: Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat Transf. 143(6) (2021c). doi:10.1115/1.4050542
[23] Calin, O.: Convolutional Networks, pp. 517-542. Springer International Publishing, Cham (2020). doi:10.1007/978-3-030-36721-3_16
[24] Calin, O.: Universal Approximators, pp. 251-284. Springer Series in the Data Sciences, Springer International Publishing, Cham (2020b). doi:10.1007/978-3-030-36721-3_9 · Zbl 1441.68001
[25] Caterini, A.L., Chang, D.E.: In: Caterini, A.L., Chang, D.E. (eds.) Deep Neural Networks in a Mathematical Framework. Generic Representation of Neural Networks, pp. 23-34. SpringerBriefs in Computer Science, Springer International Publishing, Cham (2018). doi:10.1007/978-3-319-75304-1_3 · Zbl 1387.92002
[26] Caterini, A.L., Chang, D.E.: Specific Network Descriptions. In: Caterini, A.L., Chang, D.E. (eds.) Deep Neural Networks in a Mathematical Framework, pp. 35-58. Springer International Publishing, Cham, SpringerBriefs in Computer Science (2018). doi:10.1007/978-3-319-75304-1_4 · Zbl 1387.92002
[27] Cavanagh, H.; Mosbach, A.; Scalliet, G., Physics-informed deep learning characterizes morphodynamics of asian soybean rust disease, Nat. Commun., 12, 1, 6424 (2021) · doi:10.1038/s41467-021-26577-1
[28] Chen, F.; Sondak, D.; Protopapas, P., Neurodiffeq: A python package for solving differential equations with neural networks, J. Open Source Softw., 5, 46, 1931 (2020) · doi:10.21105/joss.01931
[29] Chen, H., Engkvist, O., Wang, Y., et al.: The rise of deep learning in drug discovery. Drug Discov. Today 23(6), 1241-1250 (2018). doi:10.1016/j.drudis.2018.01.039, www.sciencedirect.com/science/article/pii/S1359644617303598
[30] Chen, Y., Lu, L., Karniadakis, G.E., et al.: Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express 28(8), 11618-11633 (2020). doi:10.1364/OE.384875, www.osapublishing.org/oe/abstract.cfm?uri=oe-28-8-11618
[31] Cheng, C., Zhang, G.T.: Deep Learning Method Based on Physics Informed Neural Network with Resnet Block for Solving Fluid Flow Problems. Water 13(4), 423 (2021). doi:10.3390/w13040423, www.mdpi.com/2073-4441/13/4/423
[32] Cheung, KC; See, S., Recent advance in machine learning for partial differential equation, CCF Trans. High Performance Comput., 3, 3, 298-310 (2021) · doi:10.1007/s42514-021-00076-7
[33] Chiu, P.H., Wong, J.C., Ooi, C., et al.: CAN-PINN: A fast physics-informed neural network based on coupled-automatic-numerical differentiation method. Comput. Methods Appl. Mech. Engrg. 395, 114,909 (2022). doi:10.1016/j.cma.2022.114909, https://www.sciencedirect.com/science/article/pii/S0045782522001906 · Zbl 1507.65204
[34] Cybenko, G., Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2, 4, 303-314 (1989) · Zbl 0679.94019 · doi:10.1007/BF02551274
[35] Dargan, S.; Kumar, M.; Ayyagari, MR, A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning, Arch. Comput. Methods Engrg., 27, 4, 1071-1092 (2020) · doi:10.1007/s11831-019-09344-w
[36] De Ryck, T., Mishra, S.: Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs. (2021) arXiv:2106.14473 [cs, math]
[37] De Ryck, T., Lanthaler, S., Mishra, S.: On the approximation of functions by tanh neural networks. Neural Netw. 143, 732-750 (2021). doi:10.1016/j.neunet.2021.08.015, www.sciencedirect.com/science/article/pii/S0893608021003208 · Zbl 07743575
[38] De Ryck, T., Jagtap, A.D., Mishra, S.: Error estimates for physics informed neural networks approximating the Navier-Stokes equations. (2022) arXiv:2203.09346 [cs, math]
[39] Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10(3), 195-201 (1994). doi:10.1002/cnm.1640100303, doi:10.1002/cnm.1640100303 · Zbl 0802.65102
[40] Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, http://www.chebfun.org/docs/guide/ (2014)
[41] Dwivedi, V., Srinivasan, B.: Physics Informed Extreme Learning Machine (PIELM)-A rapid method for the numerical solution of partial differential equations. Neurocomputing 391, 96-118 (2020). doi:10.1016/j.neucom.2019.12.099, www.sciencedirect.com/science/article/pii/S0925231219318144
[42] EW, Yu. B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Commun. Math. Stat. 6(1), 1-12 (2018). doi:10.1007/s40304-018-0127-z · Zbl 1392.35306
[43] Elbrächter, D.; Perekrestenko, D.; Grohs, P., Deep Neural Network Approximation Theory, IEEE Trans. Inf. Theory, 67, 5, 2581-2623 (2021) · Zbl 1473.68178 · doi:10.1109/TIT.2021.3062161
[44] Fang, Z.: A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network. IEEE Transactions on Neural Networks and Learning Systems pp. 1-13. (2021) doi:10.1109/TNNLS.2021.3070878
[45] Fang, Z.; Zhan, J., Deep Physical Informed Neural Networks for Metamaterial Design, IEEE Access, 8, 24506-24513 (2020) · doi:10.1109/ACCESS.2019.2963375
[46] Fang, Z.; Zhan, J., A Physics-Informed Neural Network Framework for PDEs on 3D Surfaces: Time Independent Problems, IEEE Access, 8, 26328-26335 (2020) · doi:10.1109/ACCESS.2019.2963390
[47] Fuks, O., Tchelepi, H.A.: LIMITATIONS OF PHYSICS INFORMED MACHINE LEARNING FOR NONLINEAR TWO-PHASE TRANSPORT IN POROUS MEDIA. Journal of Machine Learning for Modeling and Computing 1(1) (2020). doi:10.1615/.2020033905, https://www.dl.begellhouse.com/journals/558048804a15188a,583c4e56625ba94e,415f83b5707fde65.html
[48] Gao, H., Sun, L., Wang, J.X.: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 428, 110,079 (2021). doi:10.1016/j.jcp.2020.110079, https://www.sciencedirect.com/science/article/pii/S0021999120308536 · Zbl 07511433
[49] Gardner, J.R., Pleiss, G., Bindel, D., et al.: Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In: Advances in Neural Information Processing Systems (2018)
[50] Garnelo, M., Shanahan, M.: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Curr. Opinion in Behav. Sci. 29, 17-23 (2019). doi:10.1016/j.cobeha.2018.12.010, www.sciencedirect.com/science/article/pii/S2352154618301943
[51] Geneva, N., Zabaras, N.: Modeling the dynamics of pde systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 403, 109,056 (2020). doi:10.1016/j.jcp.2019.109056, https://www.sciencedirect.com/science/article/pii/S0021999119307612 · Zbl 1454.65130
[52] Goswami, S., Anitescu, C., Chakraborty, S., et al.: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoret. Appl. Fracture Mech. 106, 102,447 (2020). doi:10.1016/j.tafmec.2019.102447, https://www.sciencedirect.com/science/article/pii/S016784421930357X
[53] Grandits, T., Pezzuto, S., Costabal, F.S., et al.: Learning Atrial Fiber Orientations and Conductivity Tensors from Intracardiac Maps Using Physics-Informed Neural Networks. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. Springer International Publishing, Cham, Lecture Notes in Comput. Sci., pp. 650-658 (2021), doi:10.1007/978-3-030-78710-3_62
[54] Grubišić, L., Hajba, M., Lacmanović, D.: Deep Neural Network Model for Approximating Eigenmodes Localized by a Confining Potential. Entropy 23(1), 95 (2021). doi:10.3390/e23010095, www.mdpi.com/1099-4300/23/1/95
[55] Haghighat, E., Juanes, R.: SciANN: A Keras/Tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput. Methods Appl. Mech. Engrg. 373, 113,552 (2021). doi:10.1016/j.cma.2020.113552, arXiv: 2005.08803 · Zbl 1506.65251
[56] Haghighat, E., Bekar, A.C., Madenci, E., et al.: A nonlocal physics-informed deep learning framework using the peridynamic differential operator. Comput. Methods Appl. Mech. Engrg. 385, 114,012 (2021a). doi:10.1016/j.cma.2021.114012, https://www.sciencedirect.com/science/article/pii/S0045782521003431 · Zbl 1502.65172
[57] Haghighat, E., Raissi, M., Moure, A., et al.: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Engrg. 379, 113,741 (2021b). doi:10.1016/j.cma.2021.113741, https://www.sciencedirect.com/science/article/pii/S0045782521000773 · Zbl 1506.74476
[58] Haitsiukevich, K., Ilin, A.: Improved Training of Physics-Informed Neural Networks with Model Ensembles. (2022) arXiv:2204.05108 [cs, stat]
[59] He, Q., Tartakovsky, A.M.: Physics-informed neural network method for forward and backward advection-dispersion equations. Water Resources Research 57(7), e2020WR029,479 (2021). doi:10.1029/2020WR029479, doi:10.1029/2020WR029479, e2020WR029479 2020WR029479
[60] He, Q., Barajas-Solano, D., Tartakovsky, G., et al.: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv. Water Resources 141, 103,610 (2020). doi:10.1016/j.advwatres.2020.103610, https://www.sciencedirect.com/science/article/pii/S0309170819311649
[61] Hennigh, O., Narasimhan, S., Nabian, M.A., et al.: NVIDIA SimNet: An AI-Accelerated Multi-Physics Simulation Framework. In: Paszynski M, Kranzlmüller D, Krzhizhanovskaya VV, et al (eds) Computational Science - ICCS 2021. Springer International Publishing, Cham, Lecture Notes in Comput. Sci., pp. 447-461 (2021), doi:10.1007/978-3-030-77977-1_36
[62] Hillebrecht, B., Unger, B.: Certified machine learning: A posteriori error estimation for physics-informed neural networks. Tech. rep., (2022) doi:10.48550/arXiv.2203.17055, arXiv:2203.17055 [cs, math] type: article
[63] Hinze, M.; Pinnau, R.; Ulbrich, M., Optimization with PDE constraints (2008), Berlin: Springer Science & Business Media, Berlin · Zbl 1167.49001
[64] Hoffer, J.G., Geiger, B.C., Ofner, P., et al.: Mesh-Free Surrogate Models for Structural Mechanic FEM Simulation: A Comparative Study of Approaches. Appl. Sci. 11(20), 9411 (2021). doi:10.3390/app11209411, www.mdpi.com/2076-3417/11/20/9411
[65] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359-366 (1989). doi:10.1016/0893-6080(89)90020-8, www.sciencedirect.com/science/article/pii/0893608089900208 · Zbl 1383.92015
[66] Huang, GB; Wang, DH; Lan, Y., Extreme learning machines: a survey, Int. J. Mach. Learn. Cybern., 2, 2, 107-122 (2011) · doi:10.1007/s13042-011-0019-y
[67] Huang, X., Liu, H., Shi, B., et al.: Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks. (2021) arXiv:2111.01394 [physics]
[68] Irrgang, C., Boers, N., Sonnewald, M., et al.: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nat. Mach. Intelligence 3(8), 667-674 (2021). doi:10.1038/s42256-021-00374-3, www.nature.com/articles/s42256-021-00374-3
[69] Islam, M., Thakur, M.S.H., Mojumder, S., et al.: Extraction of material properties through multi-fidelity deep learning from molecular dynamics simulation. Comput. Mater. Sci. 188, 110,187 (2021). doi:10.1016/j.commatsci.2020.110187, https://www.sciencedirect.com/science/article/pii/S0927025620306789
[70] Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109,136 (2020a). doi:10.1016/j.jcp.2019.109136, https://www.sciencedirect.com/science/article/pii/S0021999119308411 · Zbl 1453.68165
[71] Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Engrg. 365, 113,028 (2020b). doi:10.1016/j.cma.2020.113028, https://www.sciencedirect.com/science/article/pii/S0045782520302127 · Zbl 1442.92002
[72] Jamali, B., Haghighat, E., Ignjatovic, A., et al.: Machine learning for accelerating 2D flood models: Potential and challenges. Hydrological Processes 35(4), e14,064 (2021). doi:10.1002/hyp.14064, doi:10.1002/hyp.14064
[73] Jin, X., Cai, S., Li, H., et al.: NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 426, 109,951 (2021). doi:10.1016/j.jcp.2020.109951, https://www.sciencedirect.com/science/article/pii/S0021999120307257 · Zbl 07510065
[74] Karniadakis, G.E., Kevrekidis, I.G., Lu, L., et al.: Physics-informed machine learning. Nature Reviews Phys. 3(6), 422-440 (2021). doi:10.1038/s42254-021-00314-5, www.nature.com/articles/s42254-021-00314-5
[75] Kashinath, K., Mustafa, M., Albert, A., et al.: Physics-informed machine learning: case studies for weather and climate modelling. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Eng. Sci. 379(2194), 20200,093 (2021). doi:10.1098/rsta.2020.0093, doi:10.1098/rsta.2020.0093
[76] Kharazmi, E., Zhang, Z., Karniadakis, G.E.: Variational Physics-Informed Neural Networks For Solving Partial Differential Equations. (2019) arXiv:1912.00873 [physics, stat]
[77] Kharazmi, E.; Cai, M.; Zheng, X., Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks, Nature Comput. Sci., 1, 11, 744-753 (2021) · doi:10.1038/s43588-021-00158-0
[78] Kharazmi, E., Zhang, Z., Karniadakis, G.E.M.: hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Engrg. 374, 113,547 (2021b). doi:10.1016/j.cma.2020.113547, https://www.sciencedirect.com/science/article/pii/S0045782520307325 · Zbl 1506.68105
[79] Kim, J., Lee, K., Lee, D., et al.: DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation. Proc. AAAI Conf. Artif. Intell. 35(9), 8146-8154 (2021a). https://ojs.aaai.org/index.php/AAAI/article/view/16992
[80] Kim, SW; Kim, I.; Lee, J., Knowledge Integration into deep learning in dynamical systems: an overview and taxonomy, J. Mech. Sci. Technol., 35, 4, 1331-1342 (2021) · doi:10.1007/s12206-021-0342-5
[81] Kissas, G., Yang, Y., Hwuang, E., et al.: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Engrg. 358, 112,623 (2020). doi:10.1016/j.cma.2019.112623, https://www.sciencedirect.com/science/article/pii/S0045782519305055 · Zbl 1441.76149
[82] Kollmannsberger, S., D’Angella, D., Jokeit, M., et al.: Physics-Informed Neural Networks. In: Kollmannsberger, S., D’Angella, D., Jokeit, M., et al. (eds.) Deep Learning in Computational Mechanics, pp. 55-84. Studies in Computational Intelligence, Springer International Publishing, Cham (2021). doi:10.1007/978-3-030-76587-3_5 · Zbl 1470.68005
[83] Kondor, R., Trivedi, S.: On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups. In: Dy J, Krause A (eds) Proceedings of the 35th International Conference on Machine Learning, Proc. Mach. Learn. Res., vol 80. PMLR, pp. 2747-2755 (2018), https://proceedings.mlr.press/v80/kondor18a.html
[84] Koryagin, A., Khudorozkov, R., Tsimfer, S.: PyDEns: a Python Framework for Solving Differential Equations with Neural Networks. (2019) arXiv:1909.11544 [cs, stat]
[85] Kovacs, A., Exl, L., Kornell, A., et al.: Conditional physics informed neural networks. Commun. Nonlinear Sci. Numer. Simulation 104, 106,041 (2022). doi:10.1016/j.cnsns.2021.106041, https://www.sciencedirect.com/science/article/pii/S1007570421003531 · Zbl 1485.65086
[86] Krishnapriyan, A., Gholami, A., Zhe, S., et al.: Characterizing possible failure modes in physics-informed neural networks. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., et al (eds) Advances in Neural Information Processing Systems, vol 34. Curran Associates, Inc., pp. 26,548-26,560 (2021), https://proceedings.neurips.cc/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
[87] Kumar, M., Yadav, N.: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey. Computers & Mathematics with Applications 62(10), 3796-3811 (2011). doi:10.1016/j.camwa.2011.09.028, www.sciencedirect.com/science/article/pii/S0898122111007966 · Zbl 1236.65107
[88] Kutyniok, G.: The Mathematics of Artificial Intelligence (2022). arXiv:2203.08890 [cs, math, stat]
[89] Lagaris, I.; Likas, A.; Fotiadis, D., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Networks, 9, 5, 987-1000 (1998) · doi:10.1109/72.712178
[90] Lagaris, I.; Likas, A.; Papageorgiou, D., Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Networks, 11, 5, 1041-1049 (2000) · doi:10.1109/72.870037
[91] Lai, Z., Mylonas, C., Nagarajaiah, S., et al.: Structural identification with physics-informed neural ordinary differential equations. J. Sound and Vibration 508, 116,196 (2021). doi:10.1016/j.jsv.2021.116196, https://www.sciencedirect.com/science/article/pii/S0022460X21002686
[92] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015) · doi:10.1038/nature14539
[93] Lee, H., Kang, I.S.: Neural algorithm for solving differential equations. J. Comput. Phys. 91(1), 110-131 (1990). doi:10.1016/0021-9991(90)90007-N, www.sciencedirect.com/science/article/pii/002199919090007N · Zbl 0717.65062
[94] Li, W., Bazant, M.Z., Zhu, J.: A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches. Comput. Methods Appl. Mech. Engrg. 383, 113,933 (2021). doi:10.1016/j.cma.2021.113933, https://www.sciencedirect.com/science/article/pii/S004578252100270X · Zbl 1506.74183
[95] Lin, C., Li, Z., Lu, L., et al.: Operator learning for predicting multiscale bubble growth dynamics. J. Chem. Phys. 154(10), 104,118 (2021a). doi:10.1063/5.0041203, doi:10.1063/5.0041203
[96] Lin, C., Maxey, M., Li, Z., et al.: A seamless multiscale operator neural network for inferring bubble dynamics. J. Fluid Mech. 929 (2021b). doi:10.1017/jfm.2021.866, https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/seamless-multiscale-operator-neural-network-for-inferring-bubble-dynamics/D516AB0EF954D0FF56AD864DB2618E94 · Zbl 1495.76119
[97] Liu, D., Wang, Y.: A Dual-Dimer method for training physics-constrained neural networks with minimax architecture. Neural Netw. 136, 112-125 (2021). doi:10.1016/j.neunet.2020.12.028, www.sciencedirect.com/science/article/pii/S0893608020304536
[98] Lu, L., Dao, M., Kumar, P., et al.: Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Nat. Acad. Sci. India Sect. 117(13), 7052-7062 (2020). doi:10.1073/pnas.1922210117, www.pnas.org/content/117/13/7052
[99] Lu, L., Jin, P., Pang, G., et al.: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mac. Intell. 3(3), 218-229 (2021). doi:10.1038/s42256-021-00302-5, www.nature.com/articles/s42256-021-00302-5
[100] Lu, L.; Meng, X.; Mao, Z., DeepXDE: A deep learning library for solving differential equations, SIAM Rev., 63, 1, 208-228 (2021) · Zbl 1459.65002 · doi:10.1137/19M1274067
[101] Lu, L.; Pestourie, R.; Yao, W., Physics-informed neural networks with hard constraints for inverse design, SIAM J. Sci. Comput., 43, 6, B1105-B1132 (2021) · Zbl 1478.35242 · doi:10.1137/21M1397908
[102] Mallat, S.: Understanding deep convolutional networks. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Eng. Sci. 374(2065), 20150,203 (2016). doi:10.1098/rsta.2015.0203, doi:10.1098/rsta.2015.0203
[103] Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Engrg. 360, 112,789 (2020). doi:10.1016/j.cma.2019.112789, https://www.sciencedirect.com/science/article/pii/S0045782519306814 · Zbl 1442.76092
[104] Mao, Z., Lu, L., Marxen, O., et al.: DeepM &Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. J. Comput. Phys. 447, 110,698 (2021). doi:10.1016/j.jcp.2021.110698, https://www.sciencedirect.com/science/article/pii/S0021999121005933 · Zbl 07516442
[105] Markidis, S.: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Frontiers in Big Data 4 (2021). https://www.frontiersin.org/article/10.3389/fdata.2021.669097
[106] Mathews, A., Francisquez, M., Hughes, J.W., et al.: Uncovering turbulent plasma dynamics via deep learning from partial observations. Phys. Review E 104(2) (2021). doi:10.1103/physreve.104.025205, https://www.osti.gov/pages/biblio/1813020
[107] McClenny, L.D., Haile, M.A., Braga-Neto, U.M.: Tensordiffeq: Scalable multi-gpu forward and inverse solvers for physics informed neural networks. (2021) arXiv preprint arXiv:2103.16034
[108] Mehta, PP; Pang, G.; Song, F., Discovering a universal variable-order fractional model for turbulent couette flow using a physics-informed neural network, Fract. Calc. Appl. Anal., 22, 6, 1675-1688 (2019) · Zbl 1434.76053 · doi:10.1515/fca-2019-0086
[109] Meng, X., Li, Z., Zhang, D., et al.: Ppinn: Parareal physics-informed neural network for time-dependent pdes. Comput. Methods Appl. Mech. Engrg. 370, 113,250 (2020). doi:10.1016/j.cma.2020.113250, https://www.sciencedirect.com/science/article/pii/S0045782520304357 · Zbl 1506.65181
[110] Minh Nguyen-Thanh, V., Trong Khiem Nguyen, L., Rabczuk, T., et al.: A surrogate model for computational homogenization of elastostatics at finite strain using high-dimensional model representation-based neural network. Int. J. Numer. Methods Eng. 121(21), 4811-4842 (2020). doi:10.1002/nme.6493, doi:10.1002/nme.6493
[111] Mishra, S.; Molinaro, R., Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, IMA J. Numer. Anal. (2021) · Zbl 07524707 · doi:10.1093/imanum/drab032
[112] Mishra, S., Molinaro, R.: Physics informed neural networks for simulating radiative transfer. J. Quant. Spectroscopy and Radiative Transf. 270, 107,705 (2021b). doi:10.1016/j.jqsrt.2021.107705, https://www.sciencedirect.com/science/article/pii/S0022407321001989
[113] Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA J. Numer. Anal. p drab093 (2022). doi:10.1093/imanum/drab093 · Zbl 07524707
[114] Misyris, G.S., Venzke, A., Chatzivasileiadis, S.: Physics-informed neural networks for power systems. 2020 IEEE Power & Energy Society General Meeting (PESGM) pp. 1-5 (2020)
[115] Mo, Y., Ling, L., Zeng, D.: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127,739 (2022). doi:10.1016/j.physleta.2021.127739, https://www.sciencedirect.com/science/article/pii/S0375960121006034 · Zbl 1483.35217
[116] Moseley, B., Markham, A., Nissen-Meyer, T.: Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations. (2021) arXiv:2107.07871 [physics]
[117] Muhammad, AN; Aseere, AM; Chiroma, H., Deep learning application in smart cities: recent development, taxonomy, challenges and research prospects, Neural Comput. Appl., 33, 7, 2973-3009 (2021) · doi:10.1007/s00521-020-05151-8
[118] Nabian, M.A., Gladstone, R.J., Meidani, H.: Efficient training of physics-informed neural networks via importance sampling. Comput. Aided Civil Infrastruct. Eng. 36(8), 962-977 (2021). doi:10.1111/mice.12685, doi:10.1111/mice.12685
[119] Nandi, T., Hennigh, O., Nabian, M., et al.: Progress Towards Solving High Reynolds Number Reacting Flows in SimNet. Tech. rep., (2021) https://www.osti.gov/biblio/1846970-progress-towards-solving-high-reynolds-number-reacting-flows-simnet
[120] Nandi, T., Hennigh, O., Nabian, M., et al.: Developing Digital Twins for Energy Applications Using Modulus. Tech. rep., (2022) https://www.osti.gov/biblio/1866819
[121] Nascimento, R.G., Fricke, K., Viana, F.A.: A tutorial on solving ordinary differential equations using python and hybrid physics-informed neural network. Eng. Appl. Artif. Intell. 96, 103,996. (2020) doi:10.1016/j.engappai.2020.103996, https://www.sciencedirect.com/science/article/pii/S095219762030292X
[122] Novak, R., Xiao, L., Hron, J., et al.: Neural tangents: Fast and easy infinite neural networks in python. In: International Conference on Learning Representations, (2020) https://github.com/google/neural-tangents
[123] NVIDIA Corporation (2021) Modulus User Guide. https://developer.nvidia.com/modulus-user-guide-v2106, release v21.06 - November 9, (2021)
[124] Oreshkin, B.N., Carpov, D., Chapados, N., et al.: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. (2020) arXiv:1905.10437 [cs, stat]
[125] Owhadi, H., Bayesian numerical homogenization, Multiscale Model. Simul, 13, 3, 812-828 (2015) · Zbl 1322.35002 · doi:10.1137/140974596
[126] Owhadi, H., Yoo, G.R.: Kernel Flows: From learning kernels from data into the abyss. J. Comput. Phys. 389, 22-47 (2019). doi:10.1016/j.jcp.2019.03.040, www.sciencedirect.com/science/article/pii/S0021999119302232 · Zbl 1452.65028
[127] Özbay, A.G., Hamzehloo, A., Laizet, S., et al.: Poisson CNN: Convolutional neural networks for the solution of the Poisson equation on a Cartesian mesh. Data-Centric Engineering 2. (2021) doi:10.1017/dce.2021.7, https://www.cambridge.org/core/journals/data-centric-engineering/article/poisson-cnn-convolutional-neural-networks-for-the-solution-of-the-poisson-equation-on-a-cartesian-mesh/8CDFD5C9D5172E51B924E9AA1BA253A1
[128] Pang, G., Lu, L., Karniadakis, G.E.: fPINNs: Fractional Physics-Informed Neural Networks. SIAM J. Sci. Comput. 41(4), A2603-A2626 (2019). doi:10.1137/18M1229845, doi:10.1137/18M1229845 · Zbl 1420.35459
[129] Paszke, A., Gross, S., Chintala, S., et al.: Automatic differentiation in PyTorch. Tech. rep., (2017) https://openreview.net/forum?id=BJJsrmfCZ
[130] Patel, R.G., Manickam, I., Trask, N.A., et al.: Thermodynamically consistent physics-informed neural networks for hyperbolic systems. J. Comput. Phys. 449, 110,754 (2022). doi:10.1016/j.jcp.2021.110754, https://www.sciencedirect.com/science/article/pii/S0021999121006495 · Zbl 07524762
[131] Pedro, J.B., Maroñas, J., Paredes, R.: Solving Partial Differential Equations with Neural Networks. (2019) arXiv:1912.04737 [physics]
[132] Peng, W., Zhang, J., Zhou, W., et al.: IDRLnet: A Physics-Informed Neural Network Library. (2021) arXiv:2107.04320 [cs, math]
[133] Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143-195 (1999). doi:10.1017/S0962492900002919, www.cambridge.org/core/journals/acta-numerica/article/abs/approximation-theory-of-the-mlp-model-in-neural-networks/18072C558C8410C4F92A82BCC8FC8CF9 · Zbl 0959.68109
[134] Pratama, D.A., Bakar, M.A., Man, M., et al.: ANNs-Based Method for Solving Partial Differential Equations : A Survey. (2021) Preprint doi:10.20944/preprints202102.0160.v1, https://www.preprints.org/manuscript/202102.0160/v1
[135] Psichogios, D.C., Ungar, L.H.: A hybrid neural network-first principles approach to process modeling. AIChE J. 38(10), 1499-1511 (1992). doi:10.1002/aic.690381003, doi:10.1002/aic.690381003
[136] Quarteroni, A., Numerical Models for Differential Problems (2013), Incorporated: Springer Publishing Company, Incorporated · Zbl 1436.65003
[137] Rackauckas, C., Ma, Y., Martensen, J., et al.: Universal Differential Equations for Scientific Machine Learning. (2021) arXiv:2001.04385 [cs, math, q-bio, stat]
[138] Rafiq, M.; Rafiq, G.; Choi, GS, DSFA-PINN: Deep Spectral Feature Aggregation Physics Informed Neural Network, IEEE Access, 10, 1 (2022) · doi:10.1109/ACCESS.2022.3153056
[139] Raissi, M.: Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19(25), 1-24 (2018). http://jmlr.org/papers/v19/18-046.html · Zbl 1439.68021
[140] Raissi, M., Karniadakis, G.E.: Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125-141 (2018). doi:10.1016/j.jcp.2017.11.039, www.sciencedirect.com/science/article/pii/S0021999117309014 · Zbl 1381.68248
[141] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Inferring solutions of differential equations using noisy multi-fidelity data. J. Comput. Phys. 335, 736-746 (2017). doi:10.1016/j.jcp.2017.01.060, www.sciencedirect.com/science/article/pii/S0021999117300761 · Zbl 1382.65229
[142] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683-693 (2017). doi:10.1016/j.jcp.2017.07.050, www.sciencedirect.com/science/article/pii/S0021999117305582 · Zbl 1380.68339
[143] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. (2017c) arXiv:1711.10561 [cs, math, stat] · Zbl 1382.65229
[144] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. (2017d) arXiv:1711.10566 [cs, math, stat] · Zbl 1382.65229
[145] Raissi, M.; Perdikaris, P.; Karniadakis, GE, Numerical gaussian processes for time-dependent and nonlinear partial differential equations, SIAM J. Sci. Comput., 40, 1, A172-A198 (2018) · Zbl 1386.65030 · doi:10.1137/17M1120762
[146] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686-707 (2019). doi:10.1016/j.jcp.2018.10.045, www.sciencedirect.com/science/article/pii/S0021999118307125 · Zbl 1415.68175
[147] Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Sci. 367(6481), 1026-1030 (2020). doi:10.1126/science.aaw4741, doi:10.1126/science.aaw4741 · Zbl 1478.76057
[148] Ramabathiran, A.A., Ramachandran, P.: SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs. J. Comput. Phys. 445, 110,600 (2021). doi:10.1016/j.jcp.2021.110600, https://www.sciencedirect.com/science/article/pii/S0021999121004952 · Zbl 07515856
[149] Rudin, C., Chen, C., Chen, Z., et al.: Interpretable machine learning: Fundamental principles and 10 grand challenges. Stat. Surveys 16(none), 1-85 (2022). doi:10.1214/21-SS133, https://projecteuclid.org/journals/statistics-surveys/volume-16/issue-none/Interpretable-machine-learning-Fundamental-principles-and-10-grand-challenges/10.1214/21-SS133.full · Zbl 07471610
[150] Ryaben’kii, V.S., Tsynkov, S.V.: A Theoretical Introduction to Numerical Analysis. CRC Press, Boca Raton, FL (2006)
[151] Sahli Costabal, F., Yang, Y., Perdikaris, P., et al.: Physics-Informed Neural Networks for Cardiac Activation Mapping. Front. Phys. 8, 42 (2020). doi:10.3389/fphy.2020.00042, www.frontiersin.org/article/10.3389/fphy.2020.00042
[152] Scharzenberger, C., Hays, J.: Learning To Estimate Regions Of Attraction Of Autonomous Dynamical Systems Using Physics-Informed Neural Networks. Tech. rep., (2021) doi:10.48550/arXiv.2111.09930, arXiv:2111.09930 [cs] type: article
[153] Schiassi, E., Furfaro, R., Leake, C., et al.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334-356 (2021). doi:10.1016/j.neucom.2021.06.015, www.sciencedirect.com/science/article/pii/S0925231221009140
[154] Schölkopf, B.; Locatello, F.; Bauer, S., Toward Causal Representation Learning, Proc. IEEE, 109, 5, 612-634 (2021) · doi:10.1109/JPROC.2021.3058954
[155] Sengupta, S., Basak, S., Saikia, P., et al.: A review of deep learning with special emphasis on architectures, applications and recent trends. Knowledge-Based Systems 194, 105,596 (2020). doi:10.1016/j.knosys.2020.105596, https://www.sciencedirect.com/science/article/pii/S095070512030071X
[156] Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in TensorFlow. Tech. rep., (2018) doi:10.48550/arXiv.1802.05799, arXiv:1802.05799 [cs, stat] type: article
[157] Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Commun. Comput. Phys. 28(5), 2042-2074 (2020a). doi:10.4208/cicp.OA-2020-0193, arXiv: 2004.01806 · Zbl 1473.65349
[158] Shin, Y., Zhang, Z., Karniadakis, G.E.: Error estimates of residual minimization using neural networks for linear PDEs. (2020b) arXiv:2010.08019 [cs, math]
[159] Shrestha, A.; Mahmood, A., Review of Deep Learning Algorithms and Architectures, IEEE Access, 7, 53040-53065 (2019) · doi:10.1109/ACCESS.2019.2912200
[160] Sirignano, J., Spiliopoulos, K.: DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339-1364 (2018). doi:10.1016/j.jcp.2018.08.029, www.sciencedirect.com/science/article/pii/S0021999118305527 · Zbl 1416.65394
[161] Sitzmann, V., Martel, J.N.P., Bergman, A.W., et al.: Implicit Neural Representations with Periodic Activation Functions (2020). arXiv:2006.09661 [cs, eess]
[162] Smith, JD; Azizzadenesheli, K.; Ross, ZE, EikoNet: Solving the Eikonal Equation With Deep Neural Networks, IEEE Trans. Geosci. Remote Sens., 59, 12, 10685-10696 (2021) · doi:10.1109/TGRS.2020.3039165
[163] Smith, JD; Ross, ZE; Azizzadenesheli, K., HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks, Geophys. J. Int., 228, 1, 698-710 (2021) · doi:10.1093/gji/ggab309
[164] Stein, ML, Large sample properties of simulations using latin hypercube sampling, Technometrics, 29, 143-151 (1987) · Zbl 0627.62010 · doi:10.1080/00401706.1987.10488205
[165] Stiasny J, Misyris GS, Chatzivasileiadis S (2021) Physics-Informed Neural Networks for Non-linear System Identification for Power System Dynamics. In: 2021 IEEE Madrid PowerTech, pp 1-6, doi:10.1109/PowerTech46648.2021.9495063
[166] Stielow, T., Scheel, S.: Reconstruction of nanoscale particles from single-shot wide-angle free-electron-laser diffraction patterns with physics-informed neural networks. Phys. Review E 103(5), 053,312 (2021). doi:10.1103/PhysRevE.103.053312, doi:10.1103/PhysRevE.103.053312
[167] Stiller, P., Bethke, F., Böhme, M., et al.: Large-Scale Neural Solvers for Partial Differential Equations. In: Nichols J, Verastegui B, Maccabe AB, et al (eds) Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. Springer International Publishing, Cham, Communications in Computer and Information Science, pp. 20-34, (2020) doi:10.1007/978-3-030-63393-6_2
[168] Sun, L., Gao, H., Pan, S., et al.: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Engrg. 361, 112,732 (2020a). doi:10.1016/j.cma.2019.112732, https://www.sciencedirect.com/science/article/pii/S004578251930622X · Zbl 1442.76096
[169] Sun, S.; Cao, Z.; Zhu, H., A Survey of Optimization Methods From a Machine Learning Perspective, IEEE Trans. Cybernet., 50, 8, 3668-3681 (2020) · doi:10.1109/TCYB.2019.2950779
[170] Tartakovsky, A.M., Marrero, C.O., Perdikaris, P., et al.: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems. Water Resources Research 56(5), e2019WR026,731 (2020). doi:10.1029/2019WR026731, doi:10.1029/2019WR026731
[171] Thompson, D.B.: Numerical Methods 101 - Convergence of Numerical Models. ASCE, pp. 398-403 (1992), https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0078142
[172] Tong, Y., Xiong, S., He, X., et al.: Symplectic neural networks in taylor series form for hamiltonian systems. J. Comput. Phys. 437, 110,325 (2021). doi:10.1016/j.jcp.2021.110325, https://www.sciencedirect.com/science/article/pii/S0021999121002205 · Zbl 07505909
[173] Torabi Rad, M., Viardin, A., Schmitz, G.J., et al.: Theory-training deep neural networks for an alloy solidification benchmark problem. Comput. Mater. Sci. 180, 109,687 (2020). doi:10.1016/j.commatsci.2020.109687, https://www.sciencedirect.com/science/article/pii/S0927025620301786
[174] Viana, F.A.C., Nascimento, R.G., Dourado, A., et al.: Estimating model inadequacy in ordinary differential equations with physics-informed neural networks. Comput. Structures 245, 106,458 (2021). doi:10.1016/j.compstruc.2020.106458, https://www.sciencedirect.com/science/article/pii/S0045794920302613
[175] Waheed, U.b., Haghighat, E., Alkhalifah, T., et al.: PINNeik: Eikonal solution using physics-informed neural networks. Comput. Geosci. 155, 104,833 (2021). doi:10.1016/j.cageo.2021.104833, https://www.sciencedirect.com/science/article/pii/S009830042100131X
[176] Wang, L., Yan, Z.: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning. Phys. Lett. A 404, 127,408 (2021). doi:10.1016/j.physleta.2021.127408, https://www.sciencedirect.com/science/article/pii/S0375960121002723 · Zbl 07409914
[177] Wang, N., Chang, H., Zhang, D.: Theory-guided auto-encoder for surrogate construction and inverse modeling. Comput. Methods Appl. Mech. Engrg. 385, 114,037 (2021a). doi:10.1016/j.cma.2021.114037, https://www.sciencedirect.com/science/article/pii/S0045782521003686 · Zbl 1502.65291
[178] Wang, S., Perdikaris, P.: Deep learning of free boundary and Stefan problems. J. Comput. Phys. 428, 109,914 (2021). doi:10.1016/j.jcp.2020.109914, https://www.sciencedirect.com/science/article/pii/S0021999120306884 · Zbl 07511408
[179] Wang, S., Teng, Y., Perdikaris, P.: Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks. SIAM J. Sci. Comput. 43(5), A3055-A3081 (2021). doi:10.1137/20M1318043, doi:10.1137/20M1318043 · Zbl 07395804
[180] Wang, S., Sankaran, S., Perdikaris, P.: Respecting causality is all you need for training physics-informed neural networks. (2022a) arXiv:2203.07404 [nlin, physics:physics, stat]
[181] Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: A neural tangent kernel perspective. J. Comput. Phys. 449, 110,768 (2022b). doi:10.1016/j.jcp.2021.110768, https://www.sciencedirect.com/science/article/pii/S002199912100663X · Zbl 07524768
[182] Wen, G., Li, Z., Azizzadenesheli, K., et al.: U-FNO-An enhanced Fourier neural operator-based deep-learning model for multiphase flow. Adv. Water Resources 163, 104,180 (2022). doi:10.1016/j.advwatres.2022.104180, https://www.sciencedirect.com/science/article/pii/S0309170822000562
[183] Wiecha, P.R., Arbouet, A., Arbouet, A., et al.: Deep learning in nano-photonics: inverse design and beyond. Photonics Research 9(5), B182-B200 (2021). doi:10.1364/PRJ.415960, www.osapublishing.org/prj/abstract.cfm?uri=prj-9-5-B182
[184] Wong, JC; Gupta, A.; Ong, YS, Can Transfer Neuroevolution Tractably Solve Your Differential Equations?, IEEE Comput. Intell. Mag., 16, 2, 14-30 (2021) · doi:10.1109/MCI.2021.3061854
[185] Wong, J.C., Ooi, C., Gupta, A., et al.: Learning in Sinusoidal Spaces with Physics-Informed Neural Networks. (2022) arXiv:2109.09338 [physics]
[186] Xiao, H., Wu, J.L., Laizet, S., et al.: Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations. Comput. Fluids 200, 104,431 (2020). doi:10.1016/j.compfluid.2020.104431, https://www.sciencedirect.com/science/article/pii/S0045793020300074 · Zbl 1519.76107
[187] Xu, K., Darve, E.: ADCME: Learning Spatially-varying Physical Fields using Deep Neural Networks. (2020) arXiv:2011.11955 [cs, math]
[188] Xu, K., Darve, E.: Solving inverse problems in stochastic models using deep neural networks and adversarial training. Comput. Methods Appl. Mech. Engrg. 384, 113,976 (2021). doi:10.1016/j.cma.2021.113976, https://www.sciencedirect.com/science/article/pii/S0045782521003078 · Zbl 1506.65017
[189] Yang, L.; Zhang, D.; Karniadakis, GE, Physics-informed generative adversarial networks for stochastic differential equations, SIAM J. Sci. Comput., 42, 1, A292-A317 (2020) · Zbl 1440.60065 · doi:10.1137/18M1225409
[190] Yang, L., Meng, X., Karniadakis, G.E.: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 425, 109,913 (2021). doi:10.1016/j.jcp.2020.109913, https://www.sciencedirect.com/science/article/pii/S0021999120306872 · Zbl 07508507
[191] Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed neural networks. J. Comput. Phys. 394, 136-152 (2019). doi:10.1016/j.jcp.2019.05.027, www.sciencedirect.com/science/article/pii/S0021999119303584 · Zbl 1452.68171
[192] Yarotsky, D.: Error bounds for approximations with deep relu networks. Neural Netw. 94, 103-114 (2017). doi:10.1016/j.neunet.2017.07.002, www.sciencedirect.com/science/article/pii/S0893608017301545 · Zbl 1429.68260
[193] Yuan, L., Ni, Y.Q., Deng, X.Y., et al.: A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. J. Comput. Phys. 462, 111,260 (2022). doi:10.1016/j.jcp.2022.111260,https://www.sciencedirect.com/science/article/pii/S0021999122003229 · Zbl 07536740
[194] Yucesan, Y.A., Viana, F.A.C.: Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection. Comput. Ind. 125:103,386 (2021). doi:10.1016/j.compind.2020.103386, https://www.sciencedirect.com/science/article/pii/S0166361520306205
[195] Zhang, D., Lu, L., Guo, L., et al.: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J. Comput. Phys. 397, 108,850 (2019). doi:10.1016/j.jcp.2019.07.048, https://www.sciencedirect.com/science/article/pii/S0021999119305340 · Zbl 1454.65008
[196] Zhang, D.; Guo, L.; Karniadakis, GE, Learning in modal space: Solving time-dependent stochastic pdes using physics-informed neural networks, SIAM J. Sci. Comput., 42, 2, A639-A665 (2020) · Zbl 1440.60067 · doi:10.1137/19M1260141
[197] Zhang, R., Liu, Y., Sun, H.: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures. Comput. Methods Appl. Mech. Engrg. 369, 113,226 (2020b). doi:10.1016/j.cma.2020.113226, https://www.sciencedirect.com/science/article/pii/S0045782520304114 · Zbl 1506.74004
[198] Zhi-Qin, Xu, J., et al.: Frequency principle: Fourier analysis sheds light on deep neural networks. Commun. Comput. Phys. 28(5), 1746-1767 (2020). doi:10.4208/cicp.OA-2020-0085, http://global-sci.org/intro/article_detail/cicp/18395.html · Zbl 1507.68279
[199] Zhu, Q.; Liu, Z.; Yan, J., Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks, Comput. Mech., 67, 2, 619-635 (2021) · Zbl 07360521 · doi:10.1007/s00466-020-01952-9
[200] Zhu, Y., Zabaras, N., Koutsourelakis, P.S., et al.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56-81 (2019). doi:10.1016/j.jcp.2019.05.024, www.sciencedirect.com/science/article/pii/S0021999119303559 · Zbl 1452.68172
[201] Zubov, K., McCarthy, Z., Ma, Y., et al.: NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations. (2021a) arXiv:2107.09443 [cs]
[202] Zubov, K., McCarthy, Z., Ma, Y., et al.: NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations. (2021b) arXiv:2107.09443 [cs]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.