×

Electroweak corrections to dark matter direct detection in the dark singlet phase of the N2HDM. (English) Zbl 1510.83044

Summary: Direct detection experiments are the only way to obtain indisputable evidence of the existence of dark matter (DM) in the form of a particle. These experiments have been used to probe many extensions of the Standard Model (SM) that provide DM candidates. Experimental results like the latest ones from XENON1T lead to severe constraints in the parameter space of many of the proposed models. In a simple extension of the SM, the addition of a complex singlet to the SM content, one-loop corrections need to be taken into account because the tree-level cross section is proportional to the DM velocity, and therefore negligible. In this work we study the case of a DM particle with origin in a singlet but in a larger framework of an extension by an extra doublet together with the extra singlet providing the DM candidate. We show that in the region of interest of the present and future direct detection experiments, electroweak corrections are quite stable with a \(K\)-factor very close to one.

MSC:

83C56 Dark matter and dark energy
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C50 Electromagnetic fields in general relativity and gravitational theory
81V22 Unified quantum theories
62F10 Point estimation
35B20 Perturbations in context of PDEs
85A15 Galactic and stellar structure

Software:

micrOMEGAs; HDECAY
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Meng, Y., Dark matter search results from the PandaX-4T commissioning run, Phys. Rev. Lett., 127, Article 261802 pp. (2021)
[2] Aprile, E., First dark matter search results from the XENON1T experiment, Phys. Rev. Lett., 119, Article 181301 pp. (2017)
[3] Aprile, E., Dark matter search results from a one tonne×year exposure of XENON1T
[4] Gross, C.; Lebedev, O.; Toma, T., Cancellation mechanism for dark-matter-nucleon interaction, Phys. Rev. Lett., 119, Article 191801 pp. (2017)
[5] Azevedo, D.; Duch, M.; Grzadkowski, B.; Huang, D.; Iglicki, M.; Santos, R., One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model, J. High Energy Phys., 01, Article 138 pp. (2019)
[6] Ishiwata, K.; Toma, T., Probing pseudo Nambu-Goldstone boson dark matter at loop level, J. High Energy Phys., 12, Article 089 pp. (2018)
[7] Glaus, S.; Mühlleitner, M.; Müller, J.; Patel, S.; Römer, T.; Santos, R., Electroweak corrections in a pseudo-Nambu Goldstone dark matter model revisited, J. High Energy Phys., 12, Article 034 pp. (2020)
[8] Glaus, S.; Mühlleitner, M.; Müller, J.; Patel, S.; Santos, R., Electroweak corrections to dark matter direct detection in a vector dark matter model, J. High Energy Phys., 10, Article 152 pp. (2019)
[9] Glaus, S.; Mühlleitner, M.; Müller, J.; Patel, S.; Santos, R., NLO corrections to vector dark matter direct detection – an update, (19th Hellenic School and Workshops on Elementary Particle Physics and Gravity, vol. 5 (2020))
[10] Azevedo, D.; Duch, M.; Grzadkowski, B.; Huang, D.; Iglicki, M.; Santos, R., Testing scalar versus vector dark matter, Phys. Rev. D, 99, Article 015017 pp. (2019)
[11] Engeln, I.; Ferreira, P.; Mühlleitner, M. M.; Santos, R.; Wittbrodt, J., The dark phases of the N2HDM, J. High Energy Phys., 08, Article 085 pp. (2020)
[12] I. Engeln, Phenomenological comparison of the dark phases of the next-to-two-higgs-doublet model, Master’s thesis.
[13] Chen, C.-Y.; Freid, M.; Sher, M., Next-to-minimal two Higgs doublet model, Phys. Rev. D, 89, Article 075009 pp. (2014)
[14] Mühlleitner, M.; Sampaio, M. O.P.; Santos, R.; Wittbrodt, J., The N2HDM under theoretical and experimental scrutiny, J. High Energy Phys., 03, Article 094 pp. (2017)
[15] Mühlleitner, M.; Sampaio, M. O.P.; Santos, R.; Wittbrodt, J., Phenomenological comparison of models with extended Higgs sectors, J. High Energy Phys., 08, Article 132 pp. (2017)
[16] Ferreira, P. M.; Mühlleitner, M.; Santos, R.; Weiglein, G.; Wittbrodt, J., Vacuum instabilities in the N2HDM, J. High Energy Phys., 09, Article 006 pp. (2019)
[17] Krause, M.; Lopez-Val, D.; Muhlleitner, M.; Santos, R., Gauge-independent renormalization of the N2HDM, J. High Energy Phys., 12, Article 077 pp. (2017)
[18] Fleischer, J.; Jegerlehner, F., Radiative corrections to Higgs decays in the extended Weinberg-Salam model, Phys. Rev. D, 23, 2001-2026 (1981)
[19] Krause, M.; Muhlleitner, M.; Santos, R.; Ziesche, H., Higgs-to-Higgs boson decays in a 2HDM at next-to-leading order, Phys. Rev. D, 95, Article 075019 pp. (2017)
[20] Altenkamp, L.; Dittmaier, S.; Rzehak, H., Renormalization schemes for the two-Higgs-doublet model and applications to \(h \to W W / Z Z \to 4\) fermions, J. High Energy Phys., 09, Article 134 pp. (2017)
[21] Denner, A.; Dittmaier, S.; Lang, J.-N., Renormalization of mixing angles, J. High Energy Phys., 11, Article 104 pp. (2018)
[22] Krause, M.; Mühlleitner, M., ewN2HDECAY - a program for the calculation of electroweak one-loop corrections to Higgs decays in the next-to-minimal two-Higgs-doublet model including state-of-the-art QCD corrections
[23] Azevedo, D.; Gabriel, P.; Muhlleitner, M.; Sakurai, K.; Santos, R., One-loop corrections to the Higgs boson invisible decay in the dark doublet phase of the N2HDM, J. High Energy Phys., 10, Article 044 pp. (2021)
[24] Pilaftsis, A., Resonant CP violation induced by particle mixing in transition amplitudes, Nucl. Phys. B, 504, 61-107 (1997)
[25] Kanemura, S.; Okada, Y.; Senaha, E.; Yuan, C. P., Higgs coupling constants as a probe of new physics, Phys. Rev. D, 70, Article 115002 pp. (2004)
[26] Hisano, J.; Nagai, R.; Nagata, N., Effective theories for dark matter nucleon scattering, J. High Energy Phys., 05, Article 037 pp. (2015) · Zbl 1388.83920
[27] Hisano, J.; Ishiwata, K.; Nagata, N., Direct search of dark matter in high-scale supersymmetry, Phys. Rev. D, 87, Article 035020 pp. (2013)
[28] Young, R. D.; Thomas, A. W., Octet baryon masses and sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D, 81, Article 014503 pp. (2010)
[29] Shifman, M. A.; Vainshtein, A. I.; Zakharov, V. I., Remarks on Higgs boson interactions with nucleons, Phys. Lett. B, 78, 443-446 (1978)
[30] Vecchi, L., WIMPs and un-naturalness
[31] Hisano, J.; Ishiwata, K.; Nagata, N., QCD effects on direct detection of wino dark matter, J. High Energy Phys., 06, Article 097 pp. (2015)
[32] Ellis, J.; Nagata, N.; Olive, K. A., Uncertainties in WIMP dark matter scattering revisited, Eur. Phys. J. C, 78, 569 (2018)
[33] Aad, G., Combined measurement of the Higgs boson mass in pp collisions at \(\sqrt{ s} = 7\) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett., 114, Article 191803 pp. (2015)
[34] Coimbra, R.; Sampaio, M. O.P.; Santos, R., ScannerS: constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C, 73, 2428 (2013)
[35] Mühlleitner, M.; Sampaio, M. O.P.; Santos, R.; Wittbrodt, J., ScannerS: parameter scans in extended scalar sectors, Eur. Phys. J. C, 82, 198 (2022)
[36] Peskin, M. E.; Takeuchi, T., Estimation of oblique electroweak corrections, Phys. Rev. D, 46, 381-409 (1992)
[37] Grimus, W.; Lavoura, L.; Ogreid, O. M.; Osland, P., The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B, 801, 81-96 (2008) · Zbl 1189.81254
[38] Bechtle, P.; Dercks, D.; Heinemeyer, S.; Klingl, T.; Stefaniak, T.; Weiglein, G., HiggsBounds-5: testing Higgs sectors in the LHC 13 TeV era, Eur. Phys. J. C, 80, 1211 (2020)
[39] Bechtle, P.; Heinemeyer, S.; Stål, O.; Stefaniak, T.; Weiglein, G., \(H i g g s S i g n a l s\): confronting arbitrary Higgs sectors with measurements at the tevatron and the LHC, Eur. Phys. J. C, 74, 2711 (2014)
[40] Engeln, I.; Mühlleitner, M.; Wittbrodt, J., N2HDECAY: Higgs boson decays in the different phases of the N2HDM, Comput. Phys. Commun., 234, 256-262 (2019)
[41] Djouadi, A.; Kalinowski, J.; Spira, M., HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun., 108, 56-74 (1998) · Zbl 0938.81515
[42] Djouadi, A.; Kalinowski, J.; Muehlleitner, M.; Spira, M., HDECAY: twenty_++ years after, Comput. Phys. Commun., 238, 214-231 (2019) · Zbl 07683969
[43] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., micrOMEGAs_3: a program for calculating dark matter observables, Comput. Phys. Commun., 185, 960-985 (2014)
[44] Ade, P. A.R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016)
[45] Dittmaier, S., Handbook of LHC Higgs cross sections: 1. Inclusive observables
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.