×

Optimal boundary control of the unsteady Burgers equation with simultaneous space-time discretization. (English) Zbl 1301.49076

Summary: The optimality system for the boundary controlled unsteady Burgers equation is transformed after linearization into a biharmonic equation in the space–time domain. It is then discretized in space and time simultaneously, so that standard finite element software can be easily implemented. Numerical experiments with and without control constraint problems confirm the applicability of this approach.

MSC:

49M25 Discrete approximations in optimal control
49K20 Optimality conditions for problems involving partial differential equations
35Q53 KdV equations (Korteweg-de Vries equations)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

COMSOL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hinze, Analysis of instantaneous control for the Burgers equation, Nonlinear Analysis 50 pp 1– (2002) · Zbl 1022.49001 · doi:10.1016/S0362-546X(01)00750-7
[2] Noack, Adjoint concepts for the optimal control of Burgers equation, Computational Optimization Applications 36 pp 109– (2007) · Zbl 1278.49028 · doi:10.1007/s10589-006-0393-7
[3] De los Reyes, A comparison of algorithms for control constrained optimal control of the Burgers equation, Calcolo 41 pp 203– (2004) · Zbl 1168.49309 · doi:10.1007/s10092-004-0092-7
[4] Tröltzsch, The SQP method for control constrained optimal control of the Burgers equation, ESAIM Control Optim Calculus of Variation 6 pp 649– (2001) · Zbl 1001.49035 · doi:10.1051/cocv:2001127
[5] Yılmaz, Solving distributed optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics, Journal of Computational and Applied Mathematics 235 pp 4839– (2011) · Zbl 1220.65080 · doi:10.1016/j.cam.2011.01.002
[6] Volkwein, Distributed control problems for the Burgers equation, Computational Optimization Applied 18 pp 115– (2001) · Zbl 0976.49001 · doi:10.1023/A:1008770404256
[7] Volkwein, Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods, SIAM J. Control & Optimization 41 pp 875– (2002) · Zbl 1029.49026 · doi:10.1137/S0363012900383089
[8] Volkwein, Lagrange-SQP techniques for the control constrained optimal boundary control problems for the Burgers equation, Computational Optimization and Applications 26 pp 253– (2003) · Zbl 1077.49024 · doi:10.1023/A:1026047622744
[9] Hintermüller, The primal-dual active set strategy as a semismooth Newton method SIAM, J. Optim 13 pp 865– (2002)
[10] Neitzel I Prüfert U Slawig T Solving time-dependent optimal control problems in COMSOL Multiphysics Proceedings of the COMSOL Conference Hannover 2008
[11] Neitzel, Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment, Numerical Algorithms 50 pp 241– (2009) · Zbl 1167.65381 · doi:10.1007/s11075-008-9225-4
[12] Neitzel, A smooth regularization of the projection formula for constrained parabolic optimal control problems, Numerical Functional Analysis and Optimization 32 pp 1283– (2011) · Zbl 1232.49024 · doi:10.1080/01630563.2011.597915
[13] Sheu, Newton linearization of the incompressible Navier-Stokes equations, International Journal for Numerical methods in Fluids 44 pp 297– (2004) · Zbl 1035.76038 · doi:10.1002/fld.639
[14] Yılmaz F Space-time discretization of optimal control of Burgers equation using both optimize-then-discretize and discretize-then-optimize approaches PhD thesis 2011
[15] Tröltzsch, Large Scale Scientific Computing 5910 pp 40– (2010) · Zbl 1280.49008 · doi:10.1007/978-3-642-12535-5_4
[16] Kunisch, Augmented Lagrangian-SQP techniques and their approximations, Optimization methods in partial differential equations Contemporary Math 209 pp 147– (1996) · doi:10.1090/conm/209/02764
[17] Volkwein, Mesh-independence for an augmented Lagrangian-SQP method in Hilbert spaces, SIAM J. Control Optim. 38 pp 767– (2000) · Zbl 0945.49024 · doi:10.1137/S0363012998334468
[18] Kunisch, Proper orthogonal decomposition for optimality systems, ESAIM: Mathematical Modelling and Numerical Analysis 42 pp 1– (2008) · Zbl 1141.65050 · doi:10.1051/m2an:2007054
[19] Castro, Computational Methods 2, in: Integral Methods in Science and Engineering pp 65– (2010)
[20] Ou, Unsteady adjoint method for the optimal control of advection and Burgers equation using high-order spectral difference Method, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposi 24 (2011) · doi:10.2514/6.2011-24
[21] Bartlett, Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems, Computational Methods Applied Mechanical Engineering 195 pp 6428– (2010) · Zbl 1121.49031 · doi:10.1016/j.cma.2006.01.009
[22] Ben Belgacem, Singular perturbation for the Dirichlet boundary control of elliptic problems. M2AN, Mathematical Modeling Numerical Analysis 37 pp 883– (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.