×

A new chaotic whale optimization algorithm for features selection. (English) Zbl 1422.62228

Summary: The whale optimization algorithm (WOA) is a novel evolutionary algorithm inspired by the behavior of whales. Similar to other evolutionary algorithms, entrapment in local optima and slow convergence speed are two probable problems it encounters in solving challenging real applications. This paper presents a novel chaotic whale optimization algorithm (CWOA) to overcome these problems where chaotic search is embedded in the searching iterations of WOA. Ten chaotic maps are considered to improve the performance of WOA. Experiments on ten benchmark datasets show the novel CWOA is effective for selecting relevant features with a high classification performance and a small number of features. Additionally the performance of CWOA is compared with WOA and ten other optimization algorithms. The experimental results show that circle chaotic map is the best chaotic map to significantly boost the performance of WOA. Moreover, chaotic with modifications of exploration operators outperform the highest performance.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Software:

GWO; Krill herd; WOA; UCI-ml
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ABDULLAH, A., ENAYATIFA, R., and LEE, M. (2012), “A Hybrid Genetic Algorithm and Chaotic FunctionModel for Image Encryption”, Journal of Electronics and Communication, 66, 806-816.
[2] ALATAS, B., AKIN, E., and OZER, A. (2009), “Chaos Embedded Particle Swarm Optimization Algorithms”, Journal of Chaos Soliton and Fractals, 4, 1715-1734. · Zbl 1198.90400 · doi:10.1016/j.chaos.2007.09.063
[3] BACHE, K., and LICHMAN, M. (2016), “UCI Machine Learning Repository”, http://archive.ics.uci.edu/ml.
[4] CHAOSHUN, L., XUELI, A., and RUHAI, L. (2015), “A Chaos Embedded Gsa-Svm Hybrid System for Classification”, Neural Computing and Applications, 26, 713-721. · doi:10.1007/s00521-014-1757-z
[5] CHUANG, L., YANG, C., and LI, J. (2011), “Chaotic Maps Based on Binary Particle Swarm Optimization for Feature Selection”, Applied Soft Computing, 11, 239-248. · doi:10.1016/j.asoc.2009.11.014
[6] DERRAC, J., GARCÍA, S., MOLINA, D., and HERRERA, F. (2011), “A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms”, Swarm Evoloutionary Computation, 1, 3-18. · doi:10.1016/j.swevo.2011.02.002
[7] EBRAHIMI, A., and KHAMEHCHI, E. (2016), “Sperm Whale Algorithm: An Effective Metaheuristic Algorithm for Production Optimization Problems”, Journal of Natural Gas Science and Engineering, 29, 211-222. · doi:10.1016/j.jngse.2016.01.001
[8] EMARY, E., ZAWBAA, H., and HASSANIEN, A. (2016), “Binary Grey Wolf Optimization Approaches for Feature Selection”, Neurocomputing, 172, 371-381. · doi:10.1016/j.neucom.2015.06.083
[9] GADAT, S., and YOUNES, L. (2007), “A Stochastic Algorithm for Feature Selection in Pattern Recognition”, Journal of Machine Learning Research, 8, 509-547. · Zbl 1222.68349
[10] GAI-GE, W., SUASH, D., LEANDRO, D., and COELHO, S. (2015), “Elephant Herding Optimization”, in 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, pps 1-5.
[11] GANDOMI, A., and ALAVI, A. (2012), “Krill Herd: A New Bio-Inspired Optimization Algorithm”, Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. · Zbl 1266.65092 · doi:10.1016/j.cnsns.2012.05.010
[12] GANDOMI, A., GUN, G., YANG, X., and TALATAHARI, S. (2013), “Chaos-Enhanced Accelerated Particle Swarm Optimization”, Communication Nonlinear Science and Numerical Simulation, 18(2), 327-340. · Zbl 1323.90082 · doi:10.1016/j.cnsns.2012.07.017
[13] GOLDBOGEN, J., FRIEDLAENDER, A., CALAMBOKIDIS, J., MCKENNA, M., SIMON, M., and NOWACEK, D. (2013), “Integrative Approaches to the Study of Baleen Whale Diving Behavior, Feeding Performance, and Foraging Ecology”, Bio- Science, 69, 90-100.
[14] HOF, P., and VAN, E. (2007), “Structure of the Cerebral Cortex of the Humpback Whale”, Megaptera Novaeangliae (Cetacea, Mysticeti, Balaenopteridae), 290, 1-31. HOLLAND, J.H. (1992), Adaptation in Natural and Artificial Systems, Cambridge MA: MIT Press.
[15] HOSSEINPOURFARD, R., and JAVIDI, M. (2015), “ Chaotic Pso Using the Lorenz System: An Efficient Approach for Optimizing Nonlinear Problems”, C¸ ankaya University Journal of Science and Engineering, 12(1), 40-59.
[16] HUANG, C., and WANG, C. (2006), “A Ga-Based Feature Selection and Parameters Optimization for Support Vector Machines”, Expert Systems with Applications, 31, 231-240. · doi:10.1016/j.eswa.2005.09.024
[17] KARABOGA, D. (2005), “An Idea Based on Honey Bee Swarm for Numerical Optimization”, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.
[18] KENNEDY, J., and EBERHART, R. (1995), “Particle Swarm Optimization”, in IEEE International Conference on Neural Networks, pps. 1942-1948.
[19] LI, C., ZHOU, J., and KOU, P. (2012a), “ A Novel Chaotic Particle Swarm Optimization Based Fuzzy Clustering Algorithm”, Neurocomputing, 83, 98-109. · doi:10.1016/j.neucom.2011.12.009
[20] LI, C., ZHOU, J., XIAO, J., and XIAO, H. (2012b), “Parameters Identification of Chaotic System by Chaotic Gravitational Search Algorithm”, Chaos Solitons Fractals, 45(4), 559-547.
[21] LIU, B.,WANG, L., and JIN, Y. (2005), “Improved Particle Swarm Optimization Combined with Chaos”, Chaos Solitons Fractals, 25, 1261-1271. · Zbl 1074.90564 · doi:10.1016/j.chaos.2004.11.095
[22] LIU, F., and ZHOU, Z. (2015), “New Data ClassificationMethod Based on Chaotic Particle Swarm Optimization and Least Square-Support Vector Machine”, Chemometrics and Intelligent Laboratory Systems, 147, 147-156. · doi:10.1016/j.chemolab.2015.08.015
[23] MENG, X., LIU, Y., GAO, X., and ZHANG, H. (2014), “A New Bio-Inspired Algorithm: Chicken Swarm Optimization”, in Advances in Swarm Intelligence: 5th International Conference, ICSI, pps. 86-94.
[24] MENG, X., GAO, X.Z., LU, L., LIU, Y., and ZHANG, H. (2016), “A New Bio-Inspired Optimisation Algorithm: Bird Swarm Algorithm”, Journal of Experimental and Theoretical Artificial Intelligence, 28(4), 673-687. · doi:10.1080/0952813X.2015.1042530
[25] MIRJALILI, S. (2015), “Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm”, Knowledge-Based Systems, 89, 228 - 249. · doi:10.1016/j.knosys.2015.07.006
[26] MIRJALILI, S., and LEWIS, A. (2016), “ The Whale Optimization Algorithm”, Advances in Engineering Software, 95, 51-67. · doi:10.1016/j.advengsoft.2016.01.008
[27] MIRJALILI, S., SEYED, M., and LEWIS, A. (2014), “Grey Wolf Optimizer”, Advanced Engineering Software, 69, 46-61. · doi:10.1016/j.advengsoft.2013.12.007
[28] ÖZKAYNAK, F. (2015), “A Novel Method to Imrove the Performance of Chaos Based Evolutionary Algorithms”, Optik, 126, 5434-5438. · doi:10.1016/j.ijleo.2015.09.098
[29] RATTENBORG, N., AMLANER, C., and LIMA, S. (2000), “Behavioral, Neurophysiological and Evolutionary Perspectives on Unihemispheric Sleep”, Neuroscience and Biobehavioral Reviews, 24, 817-842. · doi:10.1016/S0149-7634(00)00039-7
[30] SANTOS, D., LUVIZOTTO, L., MARIANI, V., and COELHO, L. (2012), “Least Squares Support Vector Machines with Tuning Based on Chaotic Differential Evolution Approach Applied to the Identification of a Thermal Process”, Expert Systems with Applications, 39, 4805-4812. · doi:10.1016/j.eswa.2011.09.137
[31] SAREMI, S., MIRJALILI, S., and LEWIS, A. (2014a), “Biogeography-Based Optimization with Chaos”, Neural Computing and Applications, 25, 1077-1097. · doi:10.1007/s00521-014-1597-x
[32] SAREMI, S., MIRJALILI, S., and LEWIS, A. (2014b), “Chaotic Krill Herd Optimization Algorithm”, Procedia Technology, 12, 180-185. · doi:10.1016/j.protcy.2013.12.473
[33] SHEIKHPOUR, R., SARRAMA, M., and SHEIKHPOUR, R. (2016), “Particle Swarm Optimization for Bandwidth Determination and Feature Selection of Kernel Density Estimation Based Classifiers in Diagnosis of Breast Cancer”, Applied Soft Computing, 40, 113-131. · doi:10.1016/j.asoc.2015.10.005
[34] SHOUBAO, S., YU, S., and MINGJUAN, X. (2014), “Comparisons of Firefly Algorithm with Chaotic Maps”, Computer Modeling and New Technologies, 18(12), 326-332.
[35] SIMON, D., and CLEVELAND, O. (2008), “Biogeography-Based Optimization”, IEEE Transactions on Evolutionary Computation, 12(6), 702-713. · doi:10.1109/TEVC.2008.919004
[36] SPROTT, J. (2010), Elegant Chaos Algebraically Simple Chaotic Flows, Singapore: World Scientific. · Zbl 1222.37005 · doi:10.1142/7183
[37] STEINLEY, D., and BRUSCO, M.J. (2007), “Initializing K-Means Batch Clustering: A Critical Evaluation of Several Techniques”, Journal of Classification, 24(1), 99-121. · Zbl 1144.62331 · doi:10.1007/s00357-007-0003-0
[38] STROGATZ, S. (1994), Nonlinear Dynamics and Chaos, Singapore: Perseus Books Publishing.
[39] WANG, G., GUO, L., AMIR, H., HAO, G., and WANG, H. (2014), “Chaotic Krill Herd Algorithm”, Information Sciences, 274, 17-34. · doi:10.1016/j.ins.2014.02.123
[40] WANG, N., LIU, L., and LIU, L. (2001), “Genetic Algorithm in Chaos”, OR Transaction, 5, 1-10.
[41] WATKINS, W., and SCHEVILL, W. (1979), “Aerial Observation of Feeding Behavior in Four Baleen Whales: Eubalaena Glacialis , Balaenoptera Borealis , Megaptera Novaean-Gliae , and Balaenoptera Physalus”, Journal of Mammalogy, 60(1), 155-163. · doi:10.2307/1379766
[42] WILCOXON, F. (1945), “Individual Comparisons by Ranking Methods”, Biometrics Bulletin, 1, 80-83. · doi:10.2307/3001968
[43] WU, Q. (2011), “A Self-Adaptive Embedded Chaotic Particle Swarm Optimization for Parameters Selection of Wv-Svm”, Expert Systems with Applications, 38, 184-192. · doi:10.1016/j.eswa.2010.06.038
[44] YANG, L., and CHEN, T. (2002), “Application of Chaos in Genetic Algorithms”, Communications in Theortical Physics, 38, 168-172. · doi:10.1088/0253-6102/38/2/168
[45] YANG, X., Flower Pollination Algorithm for Global Optimization, 240-249 (2012), Heidelberg · Zbl 1374.68527 · doi:10.1007/978-3-642-32894-7_27
[46] ZAWBAA, H., EMARY, E., and GROSAN, C. (2016), “Feature Selection via Chaotic Antlion Optimization”, Plos One, 11(3).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.