×

Weighted least-squares finite element method for cardiac blood flow simulation with echocardiographic data. (English) Zbl 1233.92011

Summary: As both fluid flow measurement techniques and computer simulation methods continue to improve, there is a growing need for numerical simulation approaches that can assimilate experimental data into the simulation in a flexible and mathematically consistent manner. The problem of interest here is the simulation of blood flow in the left ventricle with the assimilation of experimental data provided by ultrasound imaging of microbubbles in the blood. The weighted least-squares finite element method is used because it allows data to be assimilated in a very flexible manner so that accurate measurements are more closely matched with the numerical solution than less accurate data. This approach is applied to two different test problems: a flexible flap that is displaced by a jet of fluid and blood flow in the porcine left ventricle. By adjusting how closely the simulation matches the experimental data, one can observe potential inaccuracies in the model because the simulation without experimental data differs significantly from the simulation with the data. Additionally, the assimilation of experimental data can help the simulation capture certain small effects that are present in the experiment, but not modeled directly in the simulation.

MSC:

92C35 Physiological flow
68U20 Simulation (MSC2010)
76M10 Finite element methods applied to problems in fluid mechanics

Software:

hypre
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. B. Kim, J. R. Hertzberg, and R. Shandas, “Development and validation of echo PIV,” Experiments in Fluids, vol. 36, no. 3, pp. 455-462, 2004. · doi:10.1007/s00348-003-0743-5
[2] H. R. Zheng, L. Liu, L. Williams, J. R. Hertzberg, C. Lanning, and R. Shandas, “Real time multicomponent echo particle image velocimetry technique for opaque flow imaging,” Applied Physics Letters, vol. 88, no. 26, Article ID 261915, 2006. · doi:10.1063/1.2216875
[3] P. Jiamsripong, A. M. Calleja, M. S. Alharthi et al., “Impact of acute moderate elevation in left ventricular afterload on diastolic transmitral flow efficiency: analysis by vortex formation time,” Journal of the American Society of Echocardiography, vol. 22, no. 4, pp. 427-431, 2009. · doi:10.1016/j.echo.2008.12.006
[4] P. Jiamsripong, A. M. Calleja, M. S. Alharthi et al., “Increase in the late diastolic filling force is associated with impaired transmitral flow efficiency in acute moderate elevation of left ventricular afterload,” Journal of Ultrasound in Medicine, vol. 28, no. 2, pp. 175-182, 2009.
[5] P. Jiamsripong, M. S. Alharthi, A. M. Calleja et al., “Impact of pericardial adhesions on diastolic function as assessed by vortex formation time, a parameter of transmitral flow efficiency,” Cardiovascular Ultrasound, vol. 8, no. 1, article 42, 2010. · doi:10.1186/1476-7120-8-42
[6] J. C. Adams, P. Jiamsripong, M. Belohlavek, et al., “Potential role of Reynolds number in resolving Doppler- and catheter-based transvalvular gradient discrepancies in aortic stenosis,” Journal of Heart Valve Disease, vol. 20, no. 2, pp. 159-164, 2011.
[7] J. Westerdale, M. Belohlavek, E. M. McMahon, P. Jiamsripong, J. J. Heys, and M. Milano, “Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry,” Journal of Ultrasound in Medicine, vol. 30, no. 2, pp. 187-195, 2011.
[8] C. A. Taylor and C. A. Figueroa, “Patient-specific modeling of cardiovascular mechanics,” Annual Review of Biomedical Engineering, vol. 11, pp. 109-134, 2009. · doi:10.1146/annurev.bioeng.10.061807.160521
[9] S. S. Khalafvand, E. Y. K. Ng, and L. Zhong, “CFD simulation of flow through heart: a perspective review,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 1, pp. 113-132, 2011.
[10] D. M. McQueen and C. S. Peskin, “A three-dimensional computer model of the human heart for studying cardiac fluid dynamics,” Computer Graphics, vol. 34, no. 1, pp. 56-60, 2000.
[11] A. I. Veress, W. P. Segars, B. M. Tsui, and G. T. Gullberg, “Incorporation of a left ventricle finite element model defining infarction into the XCAT imaging phantom,” IEEE Transactions on Medical Imaging, vol. 30, no. 4, pp. 915-927, 2011.
[12] J. J. Heys, C. G. DeGroff, T. A. Manteuffel, and S. F. McCormick, “First-order system least-squares (FOSLS) for modeling blood flow,” Medical Engineering and Physics, vol. 28, no. 6, pp. 495-503, 2006. · doi:10.1016/j.medengphy.2005.10.002
[13] P. M. Gresho, R. L. Sani, and M. S. Engelman, Incompressible Flow and the Finite Element Method, vol. 2, John Wiley & Sons, Chichester, UK, 2000. · Zbl 0988.76005
[14] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, UK, 2002. · Zbl 1010.65040
[15] J. J. Heys, T. A. Manteuffel, S. F. McCormick, M. Milano, J. Westerdale, and M. Belohlavek, “Weighted least-squares finite elements based on particle imaging velocimetry data,” Journal of Computational Physics, vol. 229, no. 1, pp. 107-118, 2010. · Zbl 1381.76173 · doi:10.1016/j.jcp.2009.09.016
[16] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin, “An adaptive, formally second order accurate version of the immersed boundary method,” Journal of Computational Physics, vol. 223, no. 1, pp. 10-49, 2007. · Zbl 1163.76041 · doi:10.1016/j.jcp.2006.08.019
[17] T. J. Pedley, “Mathematical modelling of arterial fluid dynamics,” Journal of Engineering Mathematics, vol. 47, no. 3-4, pp. 419-444, 2003. · Zbl 1065.76212 · doi:10.1023/B:ENGI.0000007978.33352.59
[18] J. J. Heys, E. Lee, T. A. Manteuffel, and S. F. Mccormick, “On mass-conserving least-squares methods,” SIAM Journal on Scientific Computing, vol. 28, no. 5, pp. 1675-1693, 2006. · Zbl 1388.76052 · doi:10.1137/050640928
[19] P. B. Bochev, “Analysis of least-squares finite element methods for the navier-stokes equations,” SIAM Journal on Numerical Analysis, vol. 34, no. 5, pp. 1817-1844, 1997. · Zbl 0901.76030 · doi:10.1137/S0036142994276001
[20] B. N. Jiang, “A least-squares finite-element method for incompressible Navier-Stokes problems,” International Journal for Numerical Methods in Fluids, vol. 14, no. 7, pp. 843-859, 1992. · Zbl 0753.76097 · doi:10.1002/fld.1650140706
[21] J. J. Heys, E. Lee, T. A. Manteuffel, and S. F. McCormick, “An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation,” Journal of Computational Physics, vol. 226, no. 1, pp. 994-1006, 2007. · Zbl 1123.76032 · doi:10.1016/j.jcp.2007.05.005
[22] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2002. · Zbl 0999.65129
[23] P. M. Knupp and S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, Fla, USA, 1994. · Zbl 0855.65123
[24] J. J. Heys, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, “First-order system least squares (FOSLS) for coupled fluid-elastic problems,” Journal of Computational Physics, vol. 195, no. 2, pp. 560-575, 2004. · Zbl 1115.74320 · doi:10.1016/j.jcp.2003.09.034
[25] J. J. Heys, V. H. Barocas, and M. J. Taravella, “Modeling passive mechanical interaction between aqueous humor and iris,” Journal of Biomechanical Engineering, vol. 123, no. 6, pp. 540-547, 2001. · doi:10.1115/1.1411972
[26] P. A. Sackinger, P. R. Schunk, and R. R. Rao, “A Newton-Raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation,” Journal of Computational Physics, vol. 125, no. 1, pp. 83-103, 1996. · Zbl 0853.65138 · doi:10.1006/jcph.1996.0081
[27] Z. Q. Cai, T. A. Manteuffel, and S. F. Mccormick, “First-order system least squares for second-order partial differential equations: part II,” SIAM Journal on Numerical Analysis, vol. 34, no. 2, pp. 425-454, 1997. · Zbl 0912.65089 · doi:10.1137/S0036142994266066
[28] J. M. Fiard, T. A. Manteuffel, and S. F. Mccormick, “First-order system least squares (FOSLS) for convection-diffusion problems: numerical results,” SIAM Journal on Scientific Computing, vol. 19, no. 6, pp. 1958-1979, 1998. · Zbl 0911.65108 · doi:10.1137/S1064827596301169
[29] J. Nolting, T. Manteuffel, S. McCormick, J. Ruge, and G. Sanders, “Further results on error estimators for local refinement with first-order system least squares (FOSLS),” Numerical Linear Algebra with Applications, vol. 17, no. 2-3, pp. 387-413, 2010. · Zbl 1240.65319 · doi:10.1002/nla.696
[30] P. Bochev, Z. Cai, T. A. Manteuffel, and S. F. Mccormick, “Analysis of velocity-flux first-order system least-squares principles for the navier-stokes equations: part I,” SIAM Journal on Numerical Analysis, vol. 35, no. 3, pp. 990-1009, 1998. · Zbl 0910.76032 · doi:10.1137/S0036142996313592
[31] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 359-392, 1998. · Zbl 0915.68129 · doi:10.1137/S1064827595287997
[32] R. D. Falgout and U. M. Yang, “Hypre: a library of high performance preconditioners,” in Proceedings of the Computational Science (ICCS ’02), vol. 2331 of Lecture Notes in Computational Science Part III, pp. 632-641, April 2002. · Zbl 1056.65046
[33] J. Westerdale, M. Belohlavek, E. McMahon, P. Jiamsripong, J. Heys, and M. Milano, “Elasticity estimation using optical PIV velocity fields,” Journal of Fluids and Structures. In press.
[34] P. P. Sengupta, J. Korinek, M. Belohlavek et al., “Left ventricular structure and function: basic science for cardiac imaging,” Journal of the American College of Cardiology, vol. 48, no. 10, pp. 1988-2001, 2006. · doi:10.1016/j.jacc.2006.08.030
[35] P. P. Sengupta, V. K. Krishnamoorthy, J. Korinek et al., “Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging,” Journal of the American Society of Echocardiography, vol. 20, no. 5, pp. 539-551, 2007. · doi:10.1016/j.echo.2006.10.013
[36] P. Bagnoli, N. Malagutti, D. Gastaldi, et al., “Computational finite element model of cardiac torsion,” International Journal of Artificial Organs, vol. 34, no. 1, pp. 44-53, 2011.
[37] F. B. Sachse, G. Seemann, M. B. Mohr, and A. V. Holden, “Mathematical modeling of cardiac electro-mechanics: from protein to organ,” International Journal of Bifurcation and Chaos, vol. 13, no. 12, pp. 3747-3755, 2003. · Zbl 1058.92014 · doi:10.1142/S0218127403008910
[38] R. G. Wise, C. L. H. Huang, A. I. M. Al-Shafei, T. A. Carpenter, and L. D. Hall, “Geometrical models of left ventricular contraction from MRI of the normal and spontaneously hypertensive rat heart,” Physics in Medicine and Biology, vol. 44, no. 10, pp. 2657-2676, 1999. · doi:10.1088/0031-9155/44/10/319
[39] M. Gharib, E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri, “Optimal vortex formation as an index of cardiac health,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6305-6308, 2006. · doi:10.1073/pnas.0600520103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.