×

Hybrid control for tracking of invariant manifolds. (English) Zbl 1377.93077

Summary: This paper presents a hybrid control method that controls to unstable equilibria of nonlinear systems by taking advantage of systems’ free dynamics. The approach uses a stable manifold tracking objective in a computationally efficient, optimization-based switching control design. Resulting nonlinear controllers are closed-loop and can be computed in real-time. Our method is validated for the cart-pendulum and the pendubot inversion problems. Results show the proposed approach conserves control effort compared to tracking the desired equilibrium directly. Moreover, the method avoids parameter tuning and reduces sensitivity to initial conditions. The resulting feedback map for the cart-pendulum has a switching structure similar to existing energy based swing-up strategies. We use the Lyapunov function from these prior works to numerically verify local stability for our feedback map. However, unlike the energy based swing-up strategies, our approach does not rely on pre-derived, system-specific switching controllers. We use hybrid optimization to automate switching control synthesis online for nonlinear systems.

MSC:

93C10 Nonlinear systems in control theory
93B40 Computational methods in systems theory (MSC2010)
93B11 System structure simplification
93D30 Lyapunov and storage functions

Software:

GAIO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ansari, A. R.; Murphey, T. D., Sequential Action Control: Closed-form optimal control for nonlinear and nonsmooth systems, IEEE Trans. Robot., 32, 5, 1196-1214 (2016)
[3] Marsden, J. E.; Ross, S. D., New methods in celestial mechanics and mission design, Bull. Amer. Math. Soc., 43, 43-73 (2006) · Zbl 1098.70013
[4] Flaßkamp, K.; Ober-Blöbaum, S.; Kobilarov, M., Solving optimal control problems by exploiting inherent dynamical systems structures, J. Nonlinear Sci., 22, 4, 599-629 (2012) · Zbl 1264.37013
[5] Flaßkamp, K.; Timmermann, J.; Ober-Blöbaum, S.; Trächtler, A., Control strategies on stable manifolds for energy-efficient swing-ups of double pendula, Internat. J. Control, 87, 9, 1886-1905 (2014) · Zbl 1317.49040
[6] Allgöwer, F.; Findeisen, R.; Nagy, Z. K., Nonlinear model predictive control: From theory to application, J. Chin. Inst. Chem. Engrs, 35, 3, 299-315 (2004)
[7] (Allgöwer, F.; Zheng, A., Nonlinear Model Predictive Control. Nonlinear Model Predictive Control, Progress in Systems and Control Theory (2000), Springer) · Zbl 0934.00030
[8] Camacho, E.; Alba, C., (Model Predictive Control. Model Predictive Control, Advanced Textbooks in Control and Signal Processing (2013), Springer: Springer London)
[11] Egerstedt, M.; Wardi, Y.; Axelsson, H., Transition-time optimization for switched-mode dynamical systems, IEEE Trans. Automat. Control, 51, 1, 110-115 (2006) · Zbl 1366.93345
[13] Fantoni, I.; Lozano, R.; Spong, M. W., Energy based control of the pendubot, IEEE Trans. Automat. Control, 45, 725-729 (2000) · Zbl 1136.70329
[14] Xin, X.; Yamasaki, T., Energy-based swing-up control for a remotely driven acrobot: Theoretical and experimental results, IEEE Trans. Control Syst. Technol., 20, 4, 1048-1056 (2012)
[15] Åström, K.; Furuta, K., Swinging up a pendulum by energy control, Automatica, 36, 2, 287-295 (2000) · Zbl 0941.93543
[16] Spong, M. W., The swing up control problem for the acrobot, IEEE Control Syst. Mag., 15, 49-55 (1995)
[18] Shiriaev, A.; Pogromsky, A.; Ludvigsen, H.; Egeland, O., On global properties of passivity-based control of an inverted pendulum, Internat. J. Robust Nonlinear Control, 10, 4, 283-300 (2000) · Zbl 0952.93512
[19] Chung, C. C.; Hauser, J., Nonlinear control of a swinging pendulum, Automatica, 31, 6, 851-862 (1995) · Zbl 0825.93535
[20] Dellnitz, M.; Junge, O., Set oriented numerical methods for dynamical systems, (Fiedler, B., Handbook of Dynamical Systems (2002), Elsevier Science), 221-264, Ch. 5 · Zbl 1036.37030
[21] Dellnitz, M.; Froyland, G.; Junge, O., The algorithms behind GAIO — set oriented numerical methods for dynamical systems, (Fiedler, B., Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems (2001), Springer), 145-174 · Zbl 0998.65126
[22] Guckenheimer, J.; Holmes, P., (Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42 (1983), Springer) · Zbl 0515.34001
[23] Krauskopf, B.; Osinga, H. M.; Doedel, E. J.; Henderson, M. E.; Guckenheimer, J.; Vladimirsky, A.; Dellnitz, M.; Junge, O., A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15, 3, 763-791 (2005) · Zbl 1086.34002
[24] Åström, K. J.; Aracil, J.; Gordillo, F., A new family of smooth strategies for swinging up a pendulum, (Piztek, P., Proceedings of the 16th IFAC World Congress. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005 (2005), Elsevier) · Zbl 1149.93312
[25] Albahkali, T.; Mukherjee, R.; Das, T., Swing-up control of the pendubot: an impulse-momentum approach, IEEE Trans. Robot., 25, 4, 975-982 (2009)
[27] Parrilo, P. A., Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization (2005), California Institute of Technology, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.