×

A family of \(L\)-stable singly implicit peer methods for solving stiff IVPs. (English) Zbl 07074123

Summary: In this paper a one parameter family of \(s\)-stage singly implicit two-step peer (SIP) methods with order \((s-1)\) that are \(L\)-stable for some values of this parameter addressed for the numerical solution of stiff IVPs has been developed. General peer methods are multistage two-step methods for solving IVPs where all stages possess essentially the same accuracy and stability properties. In particular a \(s\)-stage SIP requires at each step the solution of \(s\)-implicit non-linear systems of equations of the same type in a similar way to the singly implicit Runge-Kutta methods. Here for each \( s \ge 3\) a family of one parameter \(s\)-stage SIP methods with order \((s-1)\) that are optimally zero-stable for arbitrary step size sequences is derived. For \( s \le 8\) intervals of values of this parameter that ensure their \(L\)-stability are obtained. Hence for \( s \le 8\), \(L\)-stable methods with order \((s-1)\) and a computational cost per step equivalent to \(s\) one-step backward Euler methods with the same Jacobian matrix are obtained. Further it is shown that under some restriction on the parameter each \(s\)-stage SIP method can be formulated as a cyclic multistep method of order \((s-1)\) and this implies that the Dahlquist barrier of second-order for \(A\)-stable linear multistep methods can be broken with suitable \(s\)-stage cyclic methods of these families.

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations
65L04 Numerical methods for stiff equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beck, S.: Implizite Peer-Verfahren für große steife Systeme. Ph.D. Thesis, Martin-Luther Universität Halle-Wittenberg (2014)
[2] Beck, S., Weiner, R., Podhaisky, H., Schmitt, B.A.: Implicit peer methods for large stiff ODE systems. J. Appl. Math. Comput. 38(1-2), 389-406 (2012) · Zbl 1295.65079 · doi:10.1007/s12190-011-0485-0
[3] Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008) · Zbl 1167.65041 · doi:10.1002/9780470753767
[4] Cash, J.R.: On a class of cyclic methods for the numerical integration of stiff systems of O.D.E.s. BIT 17, 270-280 (1977) · Zbl 0368.65043 · doi:10.1007/BF01932147
[5] Cash, J.R.: On the integration of Stiff Systems of ODEs using extended backward differentiation formulae. Numer. Math. 34, 235-246 (1980) · Zbl 0411.65040 · doi:10.1007/BF01396701
[6] Cash, J.R.: Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations. Proc. R. Soc. Lond. A 459, 797-815 (2003) · Zbl 1048.65070 · doi:10.1098/rspa.2003.1130
[7] Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27-43 (1963) · Zbl 0123.11703 · doi:10.1007/BF01963532
[8] Donelson, J., Hansen, E.: Cyclic composite multisep predictor – corrector methods. SIAM J. Numer. Anal. 8(1), 137-157 (1971) · Zbl 0216.48901 · doi:10.1137/0708018
[9] Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Englewood Cliffs (1971) · Zbl 1145.65316
[10] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential Algebraic Problems. Springer, Berlin (1996) · Zbl 0859.65067
[11] Iavernaro, F., Mazzia, F.: Block-boundary value methods for the solution of ordinary differential equations. SIAM J. Sci. Comput. 21(1), 323-339 (1999) · Zbl 0941.65067 · doi:10.1137/S1064827597325785
[12] Iavernaro, F., Mazzia, F.: Generalization of backward differentiation formulas for parallel computers. Numer. Algorithms 31(1-4), 139-155 (2002) · Zbl 1012.65069 · doi:10.1023/A:1021145932005
[13] Iavernaro, F., Mazzia, F.: Parallel implicit predictor corrector methods. Appl. Numer. Math. 42(1-3), 235-250 (2002) · Zbl 1004.65076 · doi:10.1016/S0168-9274(01)00153-2
[14] Mazzia, F.; Engquist, B. (ed.), Boundary value methods: GAMD, TOM (2015), Berlin
[15] Podhaisky, H., Weiner, R., Schmitt, B.A.: Rosenbrock-type peer two-step methods. Appl. Numer. Math. 53, 409-420 (2005) · Zbl 1072.65107 · doi:10.1016/j.apnum.2004.08.021
[16] Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28(125), 145-162 (1974) · Zbl 0309.65034 · doi:10.1090/S0025-5718-1974-0331793-2
[17] Radhakrishnan, K., Hindmarsh, A. C.: Description and use of LSODE, the Livermore solver for ordinary differential equations, LLNL report UCRL-ID-113855 (1993)
[18] Schmitt, B.A.: Algebraic criteria for A-stability of peer methods. arXiv:1506.05738v1 [math.NA] (2015)
[19] Schmitt, B.A., Weiner, R.: Efficient A-stable peer two-step methods. J. Comput. Appl. Math. 316, 319-329 (2017) · Zbl 1372.65197 · doi:10.1016/j.cam.2016.08.045
[20] Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 16(1), 1-22 (1997) · Zbl 0868.65040 · doi:10.1137/S1064827594276424
[21] Söderlind, G., Jay, L., Calvo, M.: Stiffness 1952-2012: sixty years in search of a definition. BIT Numer. Math. 55, 531-558 (2015) · Zbl 1317.65154 · doi:10.1007/s10543-014-0503-3
[22] Tischer, P.E., Sacks-Davis, R.: A new class of cyclic multistep formulae for stiff systems. SIAM J. Sci. Stat. Comput. 4(4), 733-746 (1983) · Zbl 0533.65044 · doi:10.1137/0904051
[23] Tischer, P.E., Gupta, G.K.: An evaluation of some new cyclic linear multistep formulas for stiff ODEs. ACM Trans. Math. Softw. 11(3), 263-270 (1985) · Zbl 0588.65049 · doi:10.1145/214408.214417
[24] Watkins, D.S.: Fundamentals of Matrix Computations. Wiley, Chichester (2010) · Zbl 1206.65003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.