Bezier5YS and SHYqp: a general framework for generating data and for modeling symmetric and asymmetric orthotropic yield surfaces. (English) Zbl 1517.74086

Summary: The design of conventional yielding criteria, within the phenomenological theory of metal plasticity, is based on a pointwise interpolation of experimental data, an approach originating in the early days of plasticity when it was believed that material parameters should be explicitly linked to experimental data. Since the latter is most often a numerical set of a small size, the inherent consequence was that yield functions were, by design, conceived with a small number of parameters as well. For decades, under the constraints of limited computational resources, this approach has had remarkable successes, particularly in the numerical simulation of metal forming operations. However, with the ever increasing level of automation of the assembly lines of most manufacturers, the demand for tight tolerances has pushed the current modeling establishment to its limits. Furthermore, in the current context of climate change, the need for the reduction of energy consumption in the transportation industries has motivated a significant amount of new research into the plasticity of lighter materials such as magnesium alloys. For these, the conventional approach to yield surface modeling has failed to produce adequate models of their yielding and flow properties. This work explores, in the broader framework of data-driven plasticity, a model based on harmonics expansion with data generated by Bezier interpolation. The resulting parameter identification scheme is a quadratic problem with linear constraints (to enforce convexity). It is shown, by applications to magnesium, titanium, aluminum and steel alloys, that the plasticity of virtually any metal can be modeled within this framework with an arbitrary degree of precision.
Python code at: https://github.com/stefanSCS/SHYqp


74S22 Isogeometric methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
74A20 Theory of constitutive functions in solid mechanics


Full Text: DOI


[1] Agnew, R. R.; Duygulu, O., Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast., 21, 1161-1193 (2005) · Zbl 1154.74305
[2] Andar, M. O.; Kuwabara, T.; Steglich, D., Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus, Mater. Sci. Eng. A, 549, 82-92 (2012)
[3] Anon, (Huh, H.; Chung, K.; Han, S. S.; Chung, W. J., Proc. NUMISHEET 2011 Benchmark Problems and Results (2011))
[4] Aretz, H.; Barlat, F., General orthotropic yield functions based on linear stress deviator transformations, (Ghosh, S.; Lee, J. K.; Castro, J. C., Proc. NUMIFORM 2004 Conference. Proc. NUMIFORM 2004 Conference, AIP Conf. Proc., vol. 712 (2004)), 147-156, 2004
[5] Bomarito, G. S.; Townsend, T. S.; Stewart, K. M.; Esham, K. V.; Emery, J. M.; Hochhalter, J. D., Development of interpretable, data-driven plasticity models with symbolic regression, Comput. Struct., 252, Article 106557 pp. (2021)
[6] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (1997), Cambridge University Press, (Chapter 7) · Zbl 0891.73001
[7] Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, (Python code at, https://cvxopt.org/). · Zbl 1058.90049
[8] Eggersmann, R.; Kirchdoerfer, T.; Reese, S.; Stainier, L.; Ortiz, M., Model-free data-driven inelasticity, Comput. Methods Appl. Mech. Engrg., 350, 81-89 (2019) · Zbl 1441.74048
[9] Esmaeili, A.; Asadi, S.; Larsson, F.; Runesson, K., Construction of macroscale yield surfaces for ductile composites based on a virtual testing strategy, Eur. J. Mech. -A/Solids, 77, Article 103786 pp. (2019) · Zbl 1473.74028
[10] Fuhg, J. N.; Fau, A.; Bouklas, N.; Marino, M., Elasto-plasticity with convex model-data-driven yield functions (2022), Preprint
[11] Goldfarb, D.; Idnani, A., A numerically stable dual method for solving strictly convex quadratic programs, Math. Program., 27, 1-33 (1983), (Python code at: https://pypi.org/project/quadprog/ or at: https://github.com/quadprog/quadprog) · Zbl 0537.90081
[12] Goldman, R., Curvature formulas for implicit curves and surfaces, Comput. Aided Geom. Design, 22, 632-658 (2005) · Zbl 1084.53004
[13] Graf, S.; Brocks, W.; Steglich, D., Yielding of magnesium: From single crystal to polycrystalline aggregates, Int. J. Plast., 23, 1957-1978 (2007) · Zbl 1129.74011
[14] Groemmer, H., (Geometric Applications of Fourier Series and Spherical Harmonics (1996), Cambridge University Press) · Zbl 0877.52002
[15] Hao, S.; Dong, X., Interpolation-based plane stress anisotropic yield models, Int. J. Mech. Sci., 178, Article 105612 pp. (2020)
[16] Hershey, A. V., The plasticity of anisotropic aggregate of anisotropic face centered cubic crystals, J. Appl. Mech., 21, 241-249 (1954) · Zbl 0059.18802
[17] Hill, R.; Hutchinson, J. W., Differential hardening in sheet metal under biaxial loading: A theoretical framework, J. Appl. Mech., 59, 2S, S1-S9 (1992) · Zbl 0825.73181
[18] Hosford, W. F., A generalized isotropic yield criterion, J. Appl. Mech., 39, 607-609 (1972)
[19] Ibanez, R.; Chavanne, E. A.; Aguado, J. V.; Gonzalez, D.; Cueto, E.; Chinesta, F., A manifold learning approach to data-driven computational elasticity and inelasticity, Arch. Comput. Methods Eng., 25, 47-57 (2016) · Zbl 1390.74195
[20] Kondori, B.; Madi, Y.; Besson, J.; Benzerga, A. A., Evolution of the 3D plastic anisotropy of HCP metals: Experiments and modeling, Int. J. Plast., 117, 71-92 (2019)
[21] Kraska, M.; Doig, M.; Tikhomirov, D.; Raabe, D.; Roters, F., Virtual material testing for stamping simulations based on polycrystal plasticity, Comput. Mater. Sci., 46, 383-392 (2009)
[22] Li, Q.; Zhang, H.; Chen, F.; Xu, D.; Sui, D.; Cui, Z., Study on the plastic anisotropy of advanced high strength steel sheet: Experiments and microstructure-based crystal plasticity modeling, Int. J. Mech. Sci., 176, Article 105569 pp. (2020)
[23] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H., Hardening evolution of AZ31b Mg sheet, Int. J. Plast., 23, 44-86 (2007) · Zbl 1331.74007
[24] Palaniswamy, H.; Al-Nasser, A., Forming of advanced high-strength steels (AHSS), (Altan, T.; Tekkaya, E., Sheet Metal Forming - Processes and Applications (2012), ASM International, Materials Park: ASM International, Materials Park Ohio)
[25] Plunkett, B.; Cazacu, O.; Barlat, F., Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Int. J. Plast., 24, 847-866 (2008) · Zbl 1144.74309
[26] Raemy, C.; Manopulo, N.; Hora, P., On the modelling of plastic anisotropy, asymmetry and directional hardening of commercially pure titanium: A planar Fourier series based approach, Int. J. Plast., 91, 182-204 (2017)
[27] Roters, F.; Diehl, M.; Eisenlohr, P.; Shanthraj, P.; Reuber, C.; Wong, S. L.; Maiti, T.; Ebrahimi, A.; Hochrainer, T.; Fabritius, H.-O.; Nikolov, S.; Friák, M.; Fujita, N.; Grilli, N.; Janssens, K. G.F.; Jia, N.; Kok, P. J.J; Ma, D.; Meier, F.; Werner, E.; Stricker, M.; Weygand, D.; Raabe, D., DAMASK - the Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale, Comput. Mater. Sci., 158, 420-478 (2019), (Web: https://damask.mpie.de/)
[28] Seifert, T.; Schmidt, I., Line-search methods in general return mapping algorithms with application to porous plasticity, Int. J. Num. Methods Eng., 73, 1468-1495 (2008) · Zbl 1163.74047
[29] Soare, S. C., A parameter identification schemefor the orthotropic Poly6 yield function satisfying the convexity condition, Eur. J. Mech. - A/Solids, 92, Article 104467 pp. (2022) · Zbl 1506.74067
[30] Soare, S. C.; Barlat, F., A study of the Yld2004 yield function and one extension in polynomial form: A new implementation algorithm, modeling range, and earing predictions for aluminum alloy sheets, Eur. J. Mech. - A/Solids, 30, 807-819 (2011) · Zbl 1278.74020
[31] Soare, S. C.; Barlat, F., About the influence of hydrostatic pressure on the yielding and flow of metallic polycrystals, J. Mech. Phys. Solids, 67, 87-99 (2014) · Zbl 1323.74022
[32] Soare, S. C.; Benzerga, A. A., On the modeling of asymmetric yield functions, Int. J. Solids Struct., 80, 486-500 (2016)
[33] Spitzig, W. A.; Richmond, O., The effect of pressure on the flow stress of metals, Acta Metall., 32, 457-463 (1984)
[34] Steglich, D.; Tian, X.; Besson, J., Mechanism-based modelling of plastic deformation in magnesium alloys, Eur. J. Mech. -A/Solids, 55, 289-303 (2016) · Zbl 1406.74123
[35] Tong, W., Calibration of a complete homogeneous polynomial yield function of six degrees for modeling orthotropic steel sheets, Acta Mech., 229, 2495-2519 (2018)
[36] Vegter, H.; Boogaard, A. H., A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, Int. J. Plast., 22, 557-580 (2006) · Zbl 1138.74303
[37] Vegter, H., Drent, P., Huetink, J., 1995. A planar isotropic yield criterion based on mechanical testing at multi-axial stress states. In: Shen, S.-F., Dawson, P.R. (Eds.), Simulation of Materials Processing: Theory, Methods and Applications. Balkema, Rotterdam, pp. 345-350.
[38] Vlassis, N. N.; Sun, W. C., Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening, Comput. Methods Appl. Mech. Engrg., 377, Article 113695 pp. (2021) · Zbl 1506.74449
[39] Wang, Y.; Wagner, N.; Rondinelli, J. M., Symbolic regression in materials science, MRS Commun., 9, 793-805 (2019)
[40] Yoon, J.; Cazacu, O.; Mishra, R. K., Constitutive modeling of AZ31 sheet alloy with application to axial crushing, Mater. Sci. Eng. A, 565, 203-212 (2013)
[41] Yoon, J. W.; Lou, Y.; Yoon, J.; Glazoff, M. V., Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast., 56, 184-202 (2014)
[42] Zecevic, M.; Beyerlein, I. J.; Knezevic, M., Activity of pyramidal I and II <c+a>slip in Mg alloys as revealed by texture development, J. Mech. Phys. Solids, 111, 290-307 (2018)
[43] Zhang, K.; Holmedal, B.; Hopperstad, O. S.; Dumoulin, S.; Gawad, J.; Van Bael, A.; Van Houtte, P., Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification, Int. J. Plast., 66, 3-30 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.