Monte Carlo simulation of sensitivity functions for few-view computed tomography of strongly absorbing media. (English) Zbl 1509.78004

The authors consider the problem of the few-view X-ray computed tomography of strongly absorbing objects. Reconstruction methods have to consider the ill-posed nature of this problem, the availability of very limited data, which are usually affected by errors. The sensitivity function characterizes the contribution of each point of the object to the signal, so it relates the data of the problem and its solution. The authors propose to compute the sensitivity function by a method based on a probabilistic interpretation of energy transport through the object from a source to a detector. To this aim, they used the software package PRIZMA that considers not only ballistic photon trajectories, but also scattering effects. The proposed method was verified by a numerical experiment where a section of a spherical heavy-metal phantom with an air cavity and a 25% density difference is reconstructed.


78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory
78A55 Technical applications of optics and electromagnetic theory
78-05 Experimental work for problems pertaining to optics and electromagnetic theory
78M31 Monte Carlo methods applied to problems in optics and electromagnetic theory


Full Text: DOI


[1] M. A. Arnautova, Y. Z. Kandiev, B. E. Lukhminsky and G. N. Malishkin, Monte-Carlo simulation in nuclear geophysics. In comparison of the PRIZMA Monte-Carlo program and benchmark experiments, Nucl. Geophys. 7 (1993), 407-418.
[2] E. J. Candès, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59 (2006), 1207-1223. · Zbl 1098.94009
[3] C. Ekdahl, Modem electron accelerators for radiography, IEEE Trans. Plasma Sci. 30 (2002), 254-261.
[4] C. W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin, 1985.
[5] G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed., Springer, London, 2009. · Zbl 1280.92002
[6] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.
[7] Z. Kaizhi, W. Long, L. Hong, D. Zhiyong, W. Wendou, Z. Wenwei, W. Meng, L. Jin, Y. Anming, X. Yutong, C. Sifu, W. Huacen, D. Guangsen, S. Jinshui, Z. Linwen, D. Jianjun and D. Bonan, Dragon-I injector based on the induction voltage adder technique, Phys. Rev. ST Accel. Beams 9 (2006), Article ID 080401.
[8] Y. Z. Kandiev, E. A. Kashaeva, K. E. Khatuntsev, E. S. Kuropatenko, L. V. Lobanova, G. N. Lukin, A. A. Malakhov, G. N. Malyshkin, D. G. Modestov, R. F. Mukhamadiev, V. G. Orlov, S. I. Samarin, E. V. Serova, S. G. Spirina, T. V. Vakhonina, N. A. Voronina and O. V. Zatsepin, Status PRIZMA, Ann. Nucl. Energy 82 (2015), 116-120.
[9] A. B. Konovalov, D. V. Mogilenskikh, E. A. Kozlov, V. V. Vlasov, A. N. Kiselev, E. V. Kovalev, M. N. Zakharov, V. N. Povyshev and V. I. Stavrietskii, Few-view gamma tomography used to monitor scabbing and shear fracture in a spherical iron shell compressed by explosion, Russ. J. Nondestruct. Test. 44 (2008), 15-24.
[10] A. B. Konovalov, V. V. Vlasov and V. V. Lyubimov, Statistical characteristics of photon distributions in a semi-infinite turbid medium: Analytical expressions and their application to tooptical tomography, Optik 124 (2013), 6000-6008.
[11] P. V. Logachev, G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko and G. A. Fat’kin, LIU-2 linear induction accelerator, Instrum. Exp. Tech. 56 (2013), 672-679.
[12] I. Lux and L. Koblinger, Monte-Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, Boca Raton, 2000.
[13] V. V. Lyubimov, A. G. Kalintsev, A. B. Konovalov, O. V. Lyamtsev, O. V. Kravtsenyuk, A. G. Murzin, O. V. Golubkina, G. B. Mordvinov, L. N. Soms and L. M. Yavorskaya, Application of the photon average trajectories method to real-time reconstruction of tissue inhomogeneities in diffuse optical tomography of strongly scattering media, Phys. Med. Biol. 47 (2002), 2109-2128.
[14] G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin and B. S. Elepov, The Monte Carlo Methods in Atmospheric Optics, Springer, Berlin, 1980.
[15] S. Mazouzi and M. Batouche, Range image segmentation by randomized region growing and Bayesian edge regularized, J. Comput. Sci. 3 (2007), 310-317.
[16] A. Mehnert and O. Jackway, An improved seeded region growing algorithm, Pattern Recognit. Lett. 18 (1997), 1065-1071.
[17] G. A. Mikhailov, On modelling random variables for one class of distribution laws, Theory Probab. Appl. 10 (1965), 681-682.
[18] J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski and F. J. Beekman, Modeling the physics in the iterative reconstruction for transmission computed tomography, Phys. Med. Biol. 58 (2013), R63-R96.
[19] M. M. Ong, R. Kihara, J. M. Zentler, B. R. Kreitzer and W. J. DeHope, Estimating the reliability of Lawrence Livermore National Laboratory (LLNL) flash x-ray (FXR) machine, 16th IEEE International Pulsed Power Conference, IEEE Press, Piscataway (2007), 1078-1081.
[20] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis and R. Willett, Deep learning techniques for inverse problems in imaging, IEEE J. Sel. Areas Inf. Theory 1 (2020), 39-56.
[21] T. F. Pang, AWE multi-axis radiographic facility: A review of 3D-reconstructions from limited data, AIP Conf. Proc. 568 (2001), 521-530.
[22] N. A. B. Riis, J. Frosig, Y. Dong and P. C. Hansen, Limited-data X-ray CT for underwater pipeline inspection, Inverse Problems 34 (2018), Article ID 034002. · Zbl 06858476
[23] V. L. Vengrinovich and S. A. Zolotarev, Iterative Methods for Tomography (in Russian), Belaruskaya Navuka, Minsk, 2009.
[24] P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—CVPR 2001, IEEE Press, Piscataway (2001), 511-518.
[25] V. V. Vlasov, A. B. Konovalov and S. V. Kolchugin, Hybrid algorithm for few-views computed tomography of strongly absorbing media: algebraic reconstruction, TV-regularization, and adaptive segmentation, J. Electron. Imaging 27 (2018), Article ID 043006.
[26] V. V. Vlasov, A. B. Konovalov and S. V. Kolchugin, Joint image reconstruction and segmentation: Comparison of two algorithms for few-view tomography (in Russian), Computer Optics 43 (2019), 1008-1020.
[27] V. V. Vlasov, A. B. Konovalov and A. S. Uglov, Few-views image reconstruction with SMART and allowance for contrast structure shadows, Computer Analysis of Images and Patterns—CAIP 2015, Lecture Notes in Comput. Sci. 9256, Springer, Cham (2015), 667-677.
[28] H. Yu and G. Wang, Compressed sensing based interior tomography, Phys. Med. Biol. 54 (2009), 2791-2805.
[29] CERN, Geant4 Physics Reference Manual, http://geant4.web.cern.ch/geant4/UserDocumentation.
[30] LLNL, ENDL overview, URL: http://nuclear.llnl.gov/CNP/ENDL/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.