×

A new improved teaching-learning-based optimization (ITLBO) algorithm for solving nonlinear inverse partial differential equation problems. (English) Zbl 1509.65088

Summary: Teaching-learning-based optimization (TLBO) algorithm is a novel population-oriented meta-heuristic algorithm. In this paper, we introduce an improved teaching-learning-based algorithm (ITLBO) and combine it with numerical methods to solve some problems of nonlinear inverse partial differential equations. The basic TLBO algorithm has been enhance to increase its exploration and optimization capacities as well as diversity, increase the number of solutions and further converge to the appropriate solution by introducing the concept of grouping, elitism, elite group, elitism rate and the number of teachers. The most important advantage in implementing this scheme is that in addition to the fact that we have improved the TLBO algorithm with a new method, without guessing the type of answer function or the type of unknown function of the nonlinear inverse problems, we can determine the unknown and the answer of the inverse problems with great accuracy by optimizing the initial numerical values in a given interval. Furthermore, the experimental results on CEC benchmark function verify the feasibility and optimization performance of ITLBO. Accurate results were obtained by implementation proposed algorithms on 3.70 GHz clock speed CPU.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
90C59 Approximation methods and heuristics in mathematical programming
35R30 Inverse problems for PDEs
35R25 Ill-posed problems for PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Software:

CEC 05; MTHSA-DHEI
Full Text: DOI

References:

[1] Ahrari, A.; Atai, AA, Grenade explosion method—a novel tool for optimization of multimodal functions, Appl Soft Comput, 10, 4, 1132-40 (2010) · doi:10.1016/j.asoc.2009.11.032
[2] Alifanov, OM, Inverse heat transfer problems (1994), New York: Springer, New York · Zbl 0979.80003 · doi:10.1007/978-3-642-76436-3
[3] Amiri, B., Application of teaching-learning-based optimization algorithm on cluster analysis, J Basic Appl Sci Res, 2, 11, 11795-11802 (2012)
[4] Anderssen, RS, Inverse problems: a pragmatist’s approach to the recovery of information from indirect measurements, Aust NZ Ind Appl Math J, 46, C588-C622 (2005) · Zbl 1078.65572
[5] Azizi, N.; Pourgholi, R., Applications of Sine-Cosine wavelets method for solving Drinfel’d-Sokolov-Wilson system, Adv Syst Sci Appl, 21, 3, 75-90 (2021)
[6] Azizi, N.; Pourgholi, R., Applications of Sine-Cosine wavelets method for solving the generalized Hirota-Satsuma coupled KdV equation, Math Sci, 26, 1-4 (2022)
[7] Baykasoglu, A.; Hamzadayi, A.; Köse, SY, Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling cases, Inf Sci, 276, 204-218 (2014) · doi:10.1016/j.ins.2014.02.056
[8] Beck, JV; Murio, DC, Combined function specification-regularization procedure for solution of inverse heat condition problem, AIAA J, 24, 180-185 (1986) · Zbl 0587.76155 · doi:10.2514/3.9240
[9] Blum, C., Ant colony optimization: introduction and recent trends, Phys Life Rev, 2, 353-73 (2005) · doi:10.1016/j.plrev.2005.10.001
[10] Cabeza, JMG; Garcia, JAM; Rodriguez, AC, A sequential algorithm of inverse heat conduction problems using singular value decomposition, Int J Therm Sci, 44, 235-244 (2005) · doi:10.1016/j.ijthermalsci.2004.06.009
[11] Cannon, JR; Duchateau, P., An inverse problem for a nonlinear diffusion equation, SIAM J Appl Math, 39, 2, 272-289 (1980) · Zbl 0452.35112 · doi:10.1137/0139024
[12] Dong, H.; Xu, Y.; Cao, D.; Zhang, W.; Yang, Z.; Li, X., An improved teaching-learning-based optimization algorithm with a modified learner phase and a new mutation-restarting phase, Knowl-Based Syst, 258 (2022) · doi:10.1016/j.knosys.2022.109989
[13] Foadian, S.; Pourgholi, R.; Hashem, TS, Cubic B-spline method for the solution of an inverse parabolic system, Appl Anal, 97, 3, 438-65 (2018) · Zbl 1466.65103 · doi:10.1080/00036811.2016.1272102
[14] Foadian, S.; Pourgholi, R.; Tabasi, SH; Damirchi, J., The inverse solution of the coupled nonlinear reaction-diffusion equations by the Haar wavelets, Int J Comput Math, 96, 1, 105-25 (2019) · Zbl 1499.65469 · doi:10.1080/00207160.2017.1417593
[15] Foadian, S.; Pourgholi, R.; Tabasi, SH; Zeidabadi, H., Solving an inverse problem for a generalized time-delayed Burgers-Fisher equation by Haar wavelet method, J Appl Anal Comput, 10, 2, 391-410 (2020) · Zbl 1459.65218
[16] Foadian S, Pourgholi R, Esfahani A (2022) Numerical solution of the linear inverse wave equation. Int J Nonlinear Anal Appl 13(2):1907-1926
[17] Ghanadian, F.; Pourgholi, R.; Tabasi, SH, An inverse problem for the damped generalized regularized long wave equation, Int J Comput Math, 99, 7, 1395-427 (2022) · Zbl 1513.35474 · doi:10.1080/00207160.2021.1978435
[18] Ghanadian, F.; Pourgholi, R.; Tabasi, SH, Numerical approximation for inverse problem of the Ostrovsky-Burgers equation, Iran J Numer Anal Optim, 12, 1, 73-109 (2022) · Zbl 1482.65172
[19] Goldberg, D., Genetic algorithms in search, optimization, and machine learning (1989), New York: Addison-Wesley, New York · Zbl 0721.68056
[20] Huanga, C-H; Yeha, C-Y; Helcio, RB; Orlande, A nonlinear inverse problem in simultaneously estimating the heat and mass production rates for a chemically reacting fluid, Chem Eng Sci, 58, 16, 3741-3752 (2003) · doi:10.1016/S0009-2509(03)00270-7
[21] Isakov, V., Inverse problems for partial differential equations, Appl Math Sci, 127, 1 (2017) · Zbl 1366.65087 · doi:10.1007/978-3-319-51658-5
[22] Jiang, Z.; Zou, F.; Chen, D.; Cao, S.; Liu, H.; Guo, W., An ensemble multi-swarm teaching-learning-based optimization algorithm for function optimization and image segmentation, Appl Soft Comput, 130 (2022) · doi:10.1016/j.asoc.2022.109653
[23] Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department
[24] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, NJ, pp 1942-1948
[25] Khajehnasiri, AA; Ezzati, R., Boubaker polynomials and their applications for solving fractional two-dimensional nonlinear partial integro-differential Volterra integral equations, Comput Appl Math, 41, 82 (2022) · Zbl 1499.65750 · doi:10.1007/s40314-022-01779-5
[26] Kudryashov, NA, On exact solutions of families of Fisher equations, Theor Math Phys, 94, 2, 211-218 (1993) · Zbl 0799.35112 · doi:10.1007/BF01019332
[27] Lee, KS; Geem, ZW, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput Methods Appl Mech Eng, 194, 3902-33 (2004) · Zbl 1096.74042 · doi:10.1016/j.cma.2004.09.007
[28] Li, G.; Niu, P.; Xiao, X., Development and investigation of efficient Artificial Bee Colony algorithm for numerical function optimization, Appl Soft Comput, 12, 320-332 (2012) · doi:10.1016/j.asoc.2011.08.040
[29] Li L, Weng W, Fujimura S (2017) An improved teaching-learning-based optimization algorithm to solve job shop scheduling problems. In: 2017 IEEE/ACIS 16th international conference on computer and information science (ICIS), pp 797-801. doi:10.1109/ICIS.2017.7960101
[30] Murio, DA, The mollification method and the numerical solution of ill-posed problems (1993), New York: Wiley-Interscience, New York · doi:10.1002/9781118033210
[31] Niknam, T.; Azizipanah-Abarghooee, R.; Narimani, MR, A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems, Eng Appl Artif Intell, 25, 8, 1577-1588 (2012) · doi:10.1016/j.engappai.2012.07.004
[32] Pandey, P.; Singh, J., An efficient computational approach for nonlinear variable order fuzzy fractional partial differential equations, Comput Appl Math, 41, 38 (2022) · Zbl 1499.35039 · doi:10.1007/s40314-021-01710-4
[33] Pourgholi, R.; Rostamian, M., A numerical technique for solving IHCPs using Tikhonov regularization method, J Math Chem, 50, 8, 2317-2337 (2012) · Zbl 1193.80028 · doi:10.1007/s10910-012-0036-4
[34] Pourgholi, R.; Tavallaie, N.; Foadian, S., Applications of Haar basis method for solving some ill-posed inverse problems, J Math Chem, 50, 8, 2317-2337 (2012) · Zbl 1310.65114 · doi:10.1007/s10910-012-0036-4
[35] Pourgholi, R.; Dana, H.; Tabasi, H., Solving an inverse heat conduction problem using genetic algorithm: sequential and multi-core parallelization approach, Appl Math Model, 38, 2014, 1948-1958 (2014) · Zbl 1427.80019 · doi:10.1016/j.apm.2013.10.019
[36] Pourgholi, R.; Tabasi, SH; Zeidabadi, H., Numerical techniques for solving system of nonlinear inverse problem, Eng Comput, 34, 3, 487-502 (2018) · Zbl 1449.65232 · doi:10.1007/s00366-017-0554-6
[37] Rao, RV; Kalyankar, VD, Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm, Eng Appl Artif, 26, 1, 524-531 (2012)
[38] Rao, RV; Kalyankar, VD, Multi-pass turning process parameter optimization using teaching-learning-based optimization algorithm, Scientia Iranica, 20, 3, 967-974 (2013)
[39] Rao, RV; Patel, V., An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems, Scientia Iranica, 20, 3, 710-720 (2013)
[40] Rao, RV; Patel, V., Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm, Appl Math Model, 37, 3, 1147-1162 (2013) · Zbl 1351.90147 · doi:10.1016/j.apm.2012.03.043
[41] Rao, RV; Savsani, VJ; Vakharia, DP, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput-Aid Design, 43, 303-15 (2011) · doi:10.1016/j.cad.2010.12.015
[42] Rao, RV; Savsani, VJ; Vakharia, DP, Teaching learning-based optimization: an optimization method for continuous non-linear large scale problems, Inf Sci, 183, 1-15 (2012) · doi:10.1016/j.ins.2011.08.006
[43] Saeedi, A.; Foadian, S.; Pourgholi, R., Applications of two numerical methods for solving inverse Benjamin-Bona-Mahony-Burgers equation, Eng Comput, 36, 4, 1453-66 (2020) · doi:10.1007/s00366-019-00775-4
[44] Sahabandu, CW; Karunarathna, D.; Sewvandi, P., A method of directly defining the inverse mapping for a nonlinear partial differential equation and for systems of nonlinear partial differential equations, Comput Appl Math, 40, 234 (2021) · Zbl 1476.35098 · doi:10.1007/s40314-021-01627-y
[45] Smith, GD, Numerical solution of partial differential equations (1965), New York: Oxford University Press, New York · Zbl 0123.11806
[46] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report
[47] Tabasi, SH; Mazraeh, HD; Irani, AA; Pourgholi, R.; Esfahani, A., The time-dependent diffusion equation: an inverse diffusivity problem, Iran J Numer Anal Optim, 11, 1, 33-54 (2021) · Zbl 1482.65174
[48] Tikhonov, AN; Arsenin, VA, Solution of ill-posed problems (1977), Washington: Winston and Sons, Washington · Zbl 0354.65028
[49] Tuo, S.; Li, C.; Liu, F., A novel multitasking ant colony optimization method for detecting multiorder SNP interactions, Interdiscipl Sci Comput Life Sci, 14, 814-832 (2022) · doi:10.1007/s12539-022-00530-2
[50] Tuo, S.; Li, C.; Liu, F., MTHSA-DHEI: multitasking harmony search algorithm for detecting high-order SNP epistatic interactions, Complex Intell Syst (2022) · doi:10.1007/s40747-022-00813-7
[51] Wang, X.; Yuekai, L., Exact solutions of the extended Burgers-Fisher equation, Chin Phys Lett, 7, 4, 145-147 (1993)
[52] Yu, K.; Wang, X.; Wang, Z., An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems, J Intell Manuf, 27, 831-843 (2016) · doi:10.1007/s10845-014-0918-3
[53] Zeidabadi, H.; Pourgholi, R.; Tabasi, SH, A hybrid scheme for time fractional inverse parabolic problem, Waves Random Complex Media, 30, 2, 354-68 (2020) · Zbl 1495.65162 · doi:10.1080/17455030.2018.1511073
[54] Zhou, J.; Zhang, Y.; Chen, JK; Feng, ZC, Inverse heat conduction in a composite slab with pyrolysis effect and temperature-dependent thermophysical properties, J Heat Transf, 132, 3 (2010) · doi:10.1115/1.4000050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.