×

Partially linear beta regression model with autoregressive errors. (English) Zbl 1329.62128

Summary: This paper is focused on developing a methodology to deal with time series data on the unit interval modeled by a partially linear model with correlated disturbances from a Bayesian perspective. In this context, the linear predictor of the beta regression model incorporates an unknown smooth function with time as an auxiliary covariate and a set of regressors. In addition, an autoregressive dependence structure is proposed for the errors of the model. This formulation can capture the dynamic evolution of curves using both non-stochastic explanatory variables and non-parametric components, allowing an accurate fit with a limited number of parameters. Diagnostic measures are derived from the case-deletion approach and an influence measure based on the Kullback-Leibler divergence is studied and thus, a new method to determine the optimal order of the autoregressive processes through an adaptive procedure using the conditional predictive ordinate statistic is presented. A simulation study is conducted to assess some properties of the Bayesian estimator. Finally, the proposed methodology is illustrated in two real-life applications.

MSC:

62F15 Bayesian inference
62J05 Linear regression; mixed models

Software:

R2WinBUGS; WinBUGS; SemiPar; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benjamin M, Rigby R, Stasinopoulos M (2011) Generalized autoregressive moving average models. J Am Stat Assoc 98:214-223 · Zbl 1047.62076
[2] Bonat WH, Ribeiro PL Jr, Zeviani WM (2015) Likelihood analysis for a class of beta mixed models. J Appl Stat 42:252-266 · Zbl 1514.62446 · doi:10.1080/02664763.2014.947248
[3] Billio M, Casarin R (2011) Beta autoregressive transition Markov-switching models for business cycle analysis. Stud Nonlinear Dyn Econ 15:1-30 · Zbl 1506.62487
[4] Brockwell PJ, Davis RA (1991) Time Series: Theory and Methods, 2nd edn. Springer, New York · Zbl 1169.62074 · doi:10.1007/978-1-4419-0320-4
[5] Brooks S, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434-455
[6] Casarin R, Dalla Valle L, Leisen F (2012) Bayesian model selection for beta autoregressive processes. Bayesian Anal 7:385-410 · Zbl 1330.62113 · doi:10.1214/12-BA713
[7] Cepeda E (2001) Modelagem da variabilidade em modelos lineares generalizados. PhD thesis, Instituto de Matemticas, Universidade Federal do Rio de Janeiro, Brazil · Zbl 1067.62010
[8] Cook RD (1986) Assessment of local influence. J R Stat Soc B 48:133-169 · Zbl 0608.62041
[9] Chen MH, Shao QM, Ibrahim J (2000) Monte Carlo methods in Bayesian computation. Springer, New York · Zbl 0949.65005 · doi:10.1007/978-1-4612-1276-8
[10] Crainiceanu C, Ruppert D, Wand MP (2005) Bayesian analysis for penalized spline regression using WinBUGS. J Stat Softw 14:1-24 · doi:10.18637/jss.v014.i14
[11] da-Silva CQ, Migon HS, Correia LT (2011) Dynamic Bayesian beta models. Comput Stat Data Anal 55:2074-2089 · Zbl 1328.62159
[12] Dunson D (2001) Commentary: practical advantages of Bayesian analysis of epidemiologic data. Am J Epidemiol 153:12-22 · doi:10.1093/aje/153.12.1222
[13] Espinheira PL, Ferrari SL, Cribari-Neto F (2008) On beta regression residuals. J Appl Stat 35:407-419 · Zbl 1147.62315 · doi:10.1080/02664760701834931
[14] Ferreira G, Castro LM, Lachos VH, Dias R (2013) Bayesian modeling of autoregressive partial linear models with scale mixture of normal errors. J Appl Stat 40:1796-1816 · Zbl 1514.62566 · doi:10.1080/02664763.2013.796349
[15] Ferrari SL, Cribari-Neto F (2004) Beta regression for modeling rates and proportions. J Appl Stat 31:799-815 · Zbl 1121.62367 · doi:10.1080/0266476042000214501
[16] Figueroa-Zúñiga J, Arellano-Valle R, Ferrari SL (2013) Mixed beta regression: a Bayesian perspective. Comptutat Stat Data Anal 61:137-147 · Zbl 1348.62194 · doi:10.1016/j.csda.2012.12.002
[17] Gelfand AE, Dey DK, Chang H (1992) Model determination using predictive distributions with implementation via sampling-based methods. Bayesian Stat 4 (Peñíscola, 1991) Oxford, New York 147-167
[18] Green P, Silverman BW (1994) Nonparametric regression and generalized linear models: a roughness penalty approach. Chapman & Hall, London · Zbl 0832.62032
[19] Guolo A, Varin C (2014) Beta regression for time series analysis of bounded data, with application to Canada Google \[^{\textregistered }\]® flu trends. Ann Appl Stat 8:74-88 · Zbl 1454.62337 · doi:10.1214/13-AOAS684
[20] Jara A, Nieto-Barajas LE, Quintana F (2013) A time series model for responses on the unit interval. Bayesian Anal 8:723-740 · Zbl 1329.62380 · doi:10.1214/13-BA844
[21] Koop G, Potter SM (1999) Dynamic asymmetries in U.S. unemployment. J Bus Econ Stat 17:298-312
[22] Kieschnick R, McCullough B (2003) Regression analysis of variates observed on (0,1): percentages, proportions and fractions. Stat Model 3:193-213 · Zbl 1070.62056 · doi:10.1191/1471082X03st053oa
[23] Kim S, Chen MH, Dey DK (2008) Flexible generalized t-link models for binary response data. Biometrika 95:93-106 · Zbl 1437.62513 · doi:10.1093/biomet/asm079
[24] Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325-337 · doi:10.1023/A:1008929526011
[25] Montgomery AL, Zarnowitz V, Tasy RS, Tiao GC (2011) Forecasting the U.S. unemployment rate. J Am Stat Assoc 93:478-493 · doi:10.1080/01621459.1998.10473696
[26] Paolino P (2001) Maximum likelihood estimation of models with beta-distributed dependent variables. Polit Anal 9:325-346 · doi:10.1093/oxfordjournals.pan.a004873
[27] R Development Core Team (2011) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. ISBN:3-900051-07-0
[28] Ruppert D (2002) Selecting the number of knots for penalized splines. J Comput Graph Stat 11:735-757
[29] Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge
[30] Rocha VA, Cribari-Neto F (2009) Beta autoregressive moving average models. Test 18:529-545 · Zbl 1203.62160 · doi:10.1007/s11749-008-0112-z
[31] Rydlewski J (2007) Beta-regression model for periodic data with a trend. Univ. Lagel. Acta Math. 45:211-222
[32] Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B 64:583-639 · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[33] Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12:1-16 · doi:10.18637/jss.v012.i03
[34] Vermaak J, Andrieu C, Doucet A, Godsil S (2004) Reversible jump Markov chain Monte Carlo strategies for Bayesia model selection in autoregressive processes. J Time Ser Anal 25:785-809 · Zbl 1062.62206 · doi:10.1111/j.1467-9892.2004.00380.x
[35] Weihua Z, Riquan Z, Zhensheng H, Jingyan F (2012) Partially linear single-index beta regression model and score test. J Multivariate Anal 103:116-123 · Zbl 1229.62052 · doi:10.1016/j.jmva.2011.06.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.