×

A general framework for large-scale model selection. (English) Zbl 1106.92003

Summary: Model selection is concerned with the choice of a mathematical model from a set of candidates that best describes a given set of experimental data. Large families of models arise in the context of structured mechanistic modelling in several application fields. In this situation the model selection problem cannot be solved by brute force testing of all possible models because of the high computational costs. However, more information on the different models of a family is available by their interdependencies, given by generalization or simplification relations. Large-scale model selection algorithms should exploit these relations for navigation in the discrete space of all model candidates.
This paper presents a general approach for large-scale model selection by specifying the necessary computational primitives for navigating in large model families. As a non-trivial example it is shown how families of biochemical network models arising from the evaluation of stimulus response experiments are mapped to the general formalism. Finally, a first model selection algorithm based on the mentioned computational primitives is introduced and applied to complex biochemical network experiments. It is based on a load-balancing algorithm by making use of grid computing facilities.

MSC:

92B05 General biology and biomathematics
92C40 Biochemistry, molecular biology
93A30 Mathematical modelling of systems (MSC2010)
90C90 Applications of mathematical programming
92-04 Software, source code, etc. for problems pertaining to biology

Software:

subplex
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Borowiak D. S., Model Discrimination for Nonlinear Regression Models (1990) · Zbl 0684.62045
[2] Box G. E.P., Technometrics 9 pp 57– (1967) · doi:10.2307/1266318
[3] Burnham K. P., Model Selection and Interference (1998) · doi:10.1007/978-1-4757-2917-7
[4] Linhart H., Model Selection (1986) · Zbl 0665.62003
[5] Maehly H. J., Journal of the ACM 7 pp 150– (1960) · Zbl 0113.32502 · doi:10.1145/321021.321026
[6] Takors, R.Weuster-Botz, D. 2001.A Model Discrimination Approach for Data Analysis and Experimental Design. Engineering and Manufacturing for Biotechnology, Edited by: Hofman, M. and Thonart, P. Vol. IV, 111–128. Kluver Academic Publisher. Engineering and Manufacturing for Biotechnology
[7] King, R., Leifheit, J. and Freyer, S. Automatic identification of mathematical models of chemical and biochemical reaction systems. Proc. CHISA 2002. August25–29, Prague. http://www-mrt.fb10.tu-berlin.de/s/de/cont/publi/2th/Article_King_Berlin2002.pdf(accessed July 2006)
[8] Leifheit, J. and King, R. (Semi-)automatic modeling of biological reaction systems with TAM-B. 9th International Conference Computer Application in Biotechnology CAB9. Nancy: IFAC.
[9] Hoffmann J. P., Journal of Genetic Programming and Evolvable Machines 52 pp 229– (2004) · Zbl 05660941 · doi:10.1023/B:GENP.0000023690.71330.42
[10] Lange H. C., Biotechnology and Bioengineering 75 pp 334– (2001) · doi:10.1002/bit.10054
[11] Schaefer U., Annals of Biochemistry 270 pp 88– (1999) · doi:10.1006/abio.1999.4048
[12] Theobald U., Biotechnology and Bioengineering 55 pp 305– (1997) · doi:10.1002/(SICI)1097-0290(19970720)55:2<305::AID-BIT8>3.0.CO;2-M
[13] Schuster, S. 1996. ”The regulation of cellular systems”. Dordrecht: Kluwer Acadamic Publishers. · Zbl 0895.92013
[14] Wiechert W., Journal of Biotechnology 94 pp 37– (2002) · doi:10.1016/S0168-1656(01)00418-7
[15] Kitano H., New Generation Computing 18 pp 199– (2000) · doi:10.1007/BF03037529
[16] Stephanopoulos G. N., Metabolic Engineering: Principles and Methodologies (1998)
[17] Degenring D., Journal of Process Control 14 pp 729– (2004) · doi:10.1016/j.jprocont.2003.12.008
[18] Seber G. A.F., Nonlinear Regression (1989) · Zbl 0721.62062 · doi:10.1002/0471725315
[19] Cornish-Bowden A., Fundamentals of Enzyme Kinetics (1996)
[20] Segel I. H., Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady-State (1975)
[21] Petersen S., Metabolic Engineering in the Post Genomic Era (2003)
[22] Voit E. O., Journal of Fermenting Technology 60 pp 233– (1982)
[23] Visser D., Metabolic Engineering 5 pp 164– (2003) · doi:10.1016/S1096-7176(03)00025-9
[24] Yen, J. and Lee, B. Using a hybrid genetic algorithm and fuzzy logic for metabolic modeling. FUZZ-IEEE 96: Proceedings of the 5th IEEE, International Conference on Fuzzy Systems. New York: IEEE.
[25] Schuster S., Nature Biotechnology 18 pp 326– (1999) · doi:10.1038/73786
[26] Klamt S., Bioinformatics 20 pp 226– (2004) · doi:10.1093/bioinformatics/btg395
[27] Haunschild M. D., Bioinformatics 21 pp 1617– (2004) · doi:10.1093/bioinformatics/bti225
[28] Hucka M., Bioinformatics 19 pp 524– (2003) · doi:10.1093/bioinformatics/btg015
[29] Hurlebaus J., In Silico Biology 2 pp 1– (2002)
[30] Rowan, T. 1990. ”Functional stability analysis of numerical algorithms”. Austin: University of Texas. PhD
[31] Nelder J. A., Computer Journal 7 pp 308– (1965) · Zbl 0229.65053 · doi:10.1093/comjnl/7.4.308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.