Metastable states of a composite system tunneling through repulsive barriers. (English. Russian original) Zbl 1338.81411

Theor. Math. Phys. 186, No. 1, 21-40 (2016); translation from Teor. Mat. Fiz. 186, No. 1, 27-50 (2016).
Summary: We consider a method for solving the problem of quantum tunneling through repulsive potential barriers for a composite system consisting of several identical particles coupled via pair oscillator-type potentials in the oscillator symmetrized-coordinate representation. We confirm the efficiency of the proposed approach by calculating complex energy values and analyzing metastable states of composite systems of three, four, and five identical particles on a line, which leads to the effect of quantum transparency of the repulsive barriers.


81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
81U10 \(n\)-body potential quantum scattering theory
81U30 Dispersion theory, dispersion relations arising in quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)


Full Text: DOI


[1] S. P. Merkuriev and L. D. Faddeev, Quantum Scattering Theory for Several Particle Systems [in Russian], Nauka, Moscow (1985); English transl.: L. D. Faddeev and S. P. Merkuriev (Math. Phys. Appl. Math., Vol. 11), Kluwer, Dordrecht (1993). · Zbl 0797.47005
[2] V. I. Kukulin, V. M. Krasnopolsky, and J. Horáček, Theory of Resonances: Principles and Applications (Reidel Texts Math. Sci., Vol. 3), Springer, Netherlands (1989). · Zbl 0707.47009
[3] Ershov, S. N.; Danilin, B. V.; Vaagen, J. S., No article title, Phys. Rev. C, 64, 064609 (2001) · doi:10.1103/PhysRevC.64.064609
[4] Pen’kov, F. M., No article title, JETP, 91, 698-705 (2000) · doi:10.1134/1.1326962
[5] Krassovitskiy, P. M.; Pen’kov, F. M., No article title, J. Phys. B, 47, 225210 (2014) · doi:10.1088/0953-4075/47/22/225210
[6] Puzynin, I. V.; Boyadzhiev, T. L.; Vinitskii, S. I.; Zemlyanaya, E. V.; Puzynina, T. P.; Chuluunbaatar, O., No article title, Phys. Part. Nucl., 38, 70-116 (2007) · doi:10.1134/S1063779607010030
[7] A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, V. P. Gerdt, and V. A. Rostovtsev, “Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions,” in: Computer Algebra in Scientific Computing (Lect. Notes. Comp. Sci., Vol. 6885, V. P. Gerdt, W. Koepf, E. W. Mayr, and E. V. Vorozhtsov, eds.), Springer, Berlin (2011), pp. 175-191. · Zbl 1308.81007 · doi:10.1007/978-3-642-23568-9_14
[8] Muga, J. G.; Palao, J. P.; Navarro, B.; Egusquiza, I. L., No article title, Phys. Rep., 395, 357-426 (2004) · doi:10.1016/j.physrep.2004.03.002
[9] Fock, V. A., No article title, Z. Phys., 61, 126-148 (1930) · JFM 56.1313.08 · doi:10.1007/BF01340294
[10] Gusev, A. A.; Vinitsky, S. I.; Chuluunbaatar, O.; Hai, L. L.; Derbov, V. L.; Gózdz, A.; Krassovitskiy, P. M., No article title, Phys. Atom. Nucl., 77, 389-413 (2014) · doi:10.1134/S1063778814030107
[11] Kramer, P.; Moshinsky, M., No article title, Nucl. Phys., 82, 241-274 (1966) · Zbl 0139.17701 · doi:10.1016/0029-5582(66)90001-0
[12] M. Moshinsky and Yu. F. Smirnov, The Harmonic Oscillator in Modern Physics (Contemp. Concepts Phys., Vol. 9), Harwood, Amsterdam (1996). · Zbl 0865.00015
[13] K. Wildermut and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, Braunschweig (1977). · doi:10.1007/978-3-322-85255-7
[14] Novoselsky, A.; Katriel, J., No article title, Ann. Phys., 196, 135-149 (1989) · Zbl 0875.35078 · doi:10.1016/0003-4916(89)90047-X
[15] Kramer, P.; Kramer, T., No article title, Phys. Scr., 90, 074014 (2015) · doi:10.1088/0031-8949/90/7/074014
[16] A. Gusev, S. Vinitsky, O. Chuluunbaatar, V. A. Rostovtsev, L. L. Hai, V. Derbov, A. Gozdz, and E. Klimov, “Symbolic-numerical algorithm for generating cluster eigenfunctions: Identical particles with pair oscillator interactions,”, Berlin, 155-168 (2013). · Zbl 1412.65199
[17] Gusev, A. A., No article title, Vestn. RUDN. Ser. Matematika. Informatika. Fizika, 1, 52-70 (2014)
[18] Gusev, A. A.; Chuluunbaatar, O.; Vinitsky, S. I.; Abrashkevich, A. G., No article title, Comput. Phys. Commun., 185, 3341-3343 (2014) · Zbl 1360.81333 · doi:10.1016/j.cpc.2014.08.002
[19] Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I., No article title, Phys. Atom. Nucl., 72, 768-778 (2009) · doi:10.1134/S1063778809050044
[20] Siegert, A. J. F., No article title, Phys. Rev., 56, 750-752 (1939) · doi:10.1103/PhysRev.56.750
[21] McCurdy, C. W.; Stroud, C. K., No article title, Comput. Phys. Commun., 63, 323-330 (1991) · Zbl 0850.65312 · doi:10.1016/0010-4655(91)90259-N
[22] Dobrowolski, A.; Gózdz, A.; Mazurek, K.; Dudek, J., No article title, Internat. J. Mod. Phys. E, 20, 500-506 (2011) · doi:10.1142/S0218301311017910
[23] V. G. Neudachin and Yu. F. Smirnov, Nuclear Clusters in Light Nuclei [in Russian], Nauka, Moscow (1969).
[24] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), Dover, New York (1972). · Zbl 0543.33001
[25] Baker, G. A., No article title, Phys. Rev., 103, 1119-1120 (1956) · Zbl 0071.42505 · doi:10.1103/PhysRev.103.1119
[26] Gusev, A. A.; Vinitsky, S. I.; Chuluunbaatar, O.; Gózdz, A.; Derbov, V. L., No article title, Phys. Scr., 89, 054011 (2014) · doi:10.1088/0031-8949/89/5/054011
[27] Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I., No article title, Comput. Phys. Commun., 177, 649-675 (2007) · Zbl 1196.81283 · doi:10.1016/j.cpc.2007.05.016
[28] Yu. N. Demkov, Variational Principles in Collision Theory [in Russian], GIFML, Moscow (1958); English transl., NASA, Washington (1965). · Zbl 0111.42806
[29] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973); English transl. (Appl. Math. Sci., Vol. 49), Springer, New York (1985).
[30] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J. (1973). · Zbl 0356.65096
[31] Zhanlav, T.; Mijiddorj, R.; Chuluunbaatar, O., No article title, Vestn. gos. un-ta. Ser. Prikladnaya matematika, 2, 27-37 (2008)
[32] Zhanlav, T.; Chuluunbaatar, O.; Ulziibayar, V., No article title, Appl. Math. Comput., 236, 239-246 (2014) · Zbl 1334.65091 · doi:10.1016/j.amc.2014.03.068
[33] J. H. Wilkinson and C. Reins, eds., Handbook for Automatic Computation: Linear Algebra (Grundlehren Math. Wiss., Vol. 186), Springer, New York (1971). · Zbl 0219.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.