×

\(F\) and \(G\) Taylor series solutions to the Stark and Kepler problems with Sundman transformations. (English) Zbl 1294.70007

Summary: The classic \(F\) and \(G\) Taylor series of Keplerian motion are extended to solve the Stark problem and to use the generalized Sundman transformation. Exact recursion formulas for the series coefficients are derived, and the method is implemented to high order via a symbolic manipulator. The results lead to fast and accurate propagation models with efficient discretizations. The new \(F\) and \(G\) Stark series solutions are compared to the Modern Taylor Series (MTS) and 8th order Runge-Kutta-Fehlberg (RKF8) solutions. In terms of runtime, the \(F\) and \(G\) approach is shown to compare favorably to the MTS method up to order 20, and both Taylor series methods enjoy approximate order of magnitude speedups compared to RKF8 implementations. Actual runtime is shown to vary with eccentricity, perturbation size, prescribed accuracy, and the Sundman power law. The method and results are valid for both the Stark and the Kepler problems. The effects of the generalized Sundman transformation on the accuracy of the propagation are analyzed. The Taylor series solutions are shown to be exceptionally efficient when the unity power law from the classic Sundman transformation is applied. An example low-thrust trajectory propagation demonstrates the utility of the \(F\) and \(G\) Stark series solutions.

MSC:

70F05 Two-body problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications, New York, NY (1971)
[2] Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. Education Series, American Institute of Aeronautics and Astronautics Inc, Reston, VA (1999) · Zbl 0972.70001 · doi:10.2514/4.861543
[3] Baumgarte, J.: Numerical stabilization of the differential equations of Keplerian motion. Celest. Mech. 5(4), 490-501 (1972) · Zbl 0263.70018 · doi:10.1007/BF01464775
[4] Bem, J., Szczodrowska-Kozar, B.: High order F and G power series for orbit determination. Astron. Astrophys. Suppl. Ser. 110, 411-417 (1995)
[5] Bendtsen, C., Stauning, O.: FADBAD, A Flexible C++ Package for Automatic Differentiation. Technical report, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark (1996)
[6] Berry, M.M., Healy, L.M.: The generalized Sundman transformation for propagation of high-eccentricity elliptical orbits. Adv. Astronaut. Sci. 112, 127-146 (2002)
[7] Berry, M.M., Healy, L.M.: Comparion of accuracy assessment techniques for numerical integration. Adv. Astronaut. Sci. 114, 1003-1016 (2003)
[8] Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.D.: ADIFOR: generating derivative codes from Fortran programs. Sci. Program. 1(1), 1-29 (1992)
[9] Bond, V.R.: A recursive formulation for computing the coefficients of the time-dependent F and G series solutions to the two-body problem. Astron. J. 71(1), 7-8 (1966)
[10] Bond, V.R.: A transformation of the two-body problem. Celest. Mech. 35(1), 1-7 (1985) · Zbl 0551.70002 · doi:10.1007/BF01229108
[11] Broucke, R.: Solution of the N-body problem with recurrent power series. Celest. Mech. 4(1), 110-115 (1971) · Zbl 0236.70008 · doi:10.1007/BF01230326
[12] Deprit, A., Zahar, R.V.M.: Numerical integration of an orbit and its concomitant variations by recurrent power series. Zeitschrift für angewandte Mathematik und Physik ZAMP 17(3), 425-430 (1966) · doi:10.1007/BF01594535
[13] Feagin, T., Mikkilineni, R.P.: The effect of time transformations on local truncation errors. Celest. Mech. 13(4), 491-493 (1976) · doi:10.1007/BF01229101
[14] Ferrer, S., Sein-Echaluce, M.L.: On the Szebehely-Bond equation. General Sundman’s transformation for the perturbed two-body problem. Celest. Mech. 32(4), 333-347 (1984) · Zbl 0592.70011 · doi:10.1007/BF01229088
[15] Fox, K.: Numerical integration of the equations of motion of celestial mechanics. Celest. Mech. 33(2), 127-142 (1984) · Zbl 0547.70008 · doi:10.1007/BF01234151
[16] Gofen, A.: Interactive environment for the Taylor integration (in 3D Stereo). In: Proceedings of the 2005 International Conference on Scientific Computing (CSC 05). CSREA Press (2005) · Zbl 0376.70013
[17] Huang, T.Y., Innanen, K.A.: The accuracy check in numerical integration of dynamical systems. Astron. J. 88(6), 870-876 (1983) · doi:10.1086/113374
[18] Jones, B., Anderson, R.: A survey of symplectic and collocation integration methods for orbit propagation. In: AAS/AIAA Spaceflight Mechanics Conference, pp. 1-20 (2012) · Zbl 0547.70008
[19] Jorba, A., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14(1), 99-117 (2005) · Zbl 1108.65072 · doi:10.1080/10586458.2005.10128904
[20] Kirchgraber, U.R.S.: A problem of orbital dynamics, which is separable in KS-variables. Celest. Mech. 4(3), 340-347 (1971) · Zbl 0229.70032 · doi:10.1007/BF01231396
[21] Lantoine, G., Russell, R.P.: Complete closed-form solutions of the Stark problem. Celest. Mech. Dyn. Astron. 109(4), 333-366 (2011). doi:10.1007/s10569-010-9331-1 · Zbl 1270.70023 · doi:10.1007/s10569-010-9331-1
[22] Merson, R.H.: Numerical Integration of the Differential Equations of Celestial Mechanics. Technical report, Royal Aircraft Establishment, Farnborough, Hants., England (1973)
[23] Montenbruck, O.: Numerical integration methods for orbital motion. Celest. Mech. Dyn. Astron. 53, 59-69 (1992a) · doi:10.1007/BF00049361
[24] Montenbruck, O.: Numerical integration of orbital motion using Taylor series. In: AAS/AIAA Spaceflight Mechanics Conference, AAS, Colorado Springs, CO (1992b)
[25] Nacozy, P.: A discussion of time transformations and local truncation errors. Celest. Mech. 13(4), 495-501 (1976) · doi:10.1007/BF01229102
[26] Nacozy, P.: The intermediate anomaly. Celest. Mech. 16(3), 309-313 (1977) · Zbl 0376.70013 · doi:10.1007/BF01232657
[27] Namouni, F., Guzzo, M.: The accelerated Kepler problem. Celest. Mech. Dyn. Astron. 99(1), 31-44 (2007). doi:10.1007/s10569-007-9087-4 · Zbl 1162.70310 · doi:10.1007/s10569-007-9087-4
[28] Papadakos, D.N.: Generalized F and G series and convergence of the power series solution to the N-body problem. Celest. Mech. 30(1), 275-282 (1983) · Zbl 0537.70004 · doi:10.1007/BF01232193
[29] Pástor, P.: Influence of fast interstellar gas flow on the dynamics of dust grains. Celest. Mech. Dyn. Astron. 112(1), 23-45 (2011). doi:10.1007/s10569-011-9379-6 · doi:10.1007/s10569-011-9379-6
[30] Poleshchikov, S.M.: One integrable case of the perturbed two-body problem. Cosm. Res. 42(4), 398-407 (2004). doi:10.1023/B:COSM.0000039740.22909.ee · doi:10.1023/B:COSM.0000039740.22909.ee
[31] Rabe, E.: Determination and survey of periodic Trojan orbits in the restricted problem of three bodies. Astron. J. 66(9), 500-513 (1961) · doi:10.1086/108451
[32] Rufer, D.: Trajectory optimization by making use of the closed solution of constant thrust-acceleration motion. Celest. Mech. 14(1), 91-103 (1976) · Zbl 0362.70030 · doi:10.1007/BF01247135
[33] Sconzo, P., LeSchack, A., Tobey, R.: Symbolic computation of f and g series by computer. Astron. J. 70(4), 269-270 (1965) · doi:10.1086/109718
[34] Scott, J.R., Martini, M.C.: High-speed solution of spacecraft trajectory problems using Taylor series integration. J. Spacecr. Rockets 47(1), 199-202 (2010) · doi:10.2514/1.43459
[35] Sharifi, M., Seif, M.: Dynamic orbit propagation in a gravitational field of an inhomogeneous attractive body using the Lagrange coefficients. Adv Space Res 48(5), 904-913 (2011). doi:10.1016/j.asr.2011.04.021 · doi:10.1016/j.asr.2011.04.021
[36] Sims, J.A., Flanagan, S.N.: Preliminary design of low-thrust interplanetary missions. In: AAS/AIAA Astrodynamic Specialist Conference, Girdwood, AK, USA (1999) · Zbl 0516.70013
[37] Soong, T.T., Paul, N.A.: A second- and higher order perturbation analysis of two-body trajectories. AIAA J. 9(4), 589-593 (1971) · Zbl 0217.54504 · doi:10.2514/3.6234
[38] Stark, J.: Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. Annalen der Physik 348(7), 965-982 (1914) · doi:10.1002/andp.19143480702
[39] Steffensen, J.F.: On the restricted problem of three bodies. Kongelige Danske Videnskabernes Selskab Mat-Fys Medd 30(18), (1956) · Zbl 0071.08901
[40] Stiefel, E.: Remarks on numerical integration of Keplerian orbits. Celest. Mech. 2(5), 274-281 (1970) · Zbl 0228.70022 · doi:10.1007/BF01235121
[41] Sundman, K.F.: Mémoire sur le problème des trois corps. Acta Math. 36(1), 105-179 (1912). doi:10.1007/BF02422379 · JFM 43.0826.01 · doi:10.1007/BF02422379
[42] Szebehely, V., Bond, V.: Transformations of the perturbed two-body problem to unperturbed harmonic oscillators. Celest. Mech. 30(1), 59-69 (1983) · Zbl 0516.70013 · doi:10.1007/BF01231102
[43] Szebehely, V., Pierce, D.: Advantages of regularization in space dynamics. AIAA J. 5(8), 1520-1522 (1967) · doi:10.2514/3.4243
[44] Velez, C.E.: Notions of analytic vs. numerical stability as applied to the numerical calculation of orbits. Celest. Mech. 10(4), 405-422 (1974) · Zbl 0314.70021 · doi:10.1007/BF01229118
[45] Walther, A.: Getting started with ADOL-C. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, chap. 7, pp. 181-202. Chapman-Hall CRC Computational Science, Boca Raton, FL (2012) · Zbl 0551.70002
[46] Yam, C.H., Izzo, D., Biscani, F.: Towards a high fidelity direct transcription method for optimisation of low-thrust trajectories. In: 4th International Conference on Astrodynamics Tools and Techniques, pp. 1-7 (2010)
[47] Zuiani, F., Vasile, M., Palmas, A., Avanzini, G.: Direct transcription of low-thrust trajectories with finite trajectory elements. Acta Astronaut. 72, 108-120 (2012). doi:10.1016/j.actaastro.2011.09.011 · doi:10.1016/j.actaastro.2011.09.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.