×

Two Higgs bosons near 125gev in the complex NMSSM and the LHC run I data. (English) Zbl 1433.81008

Summary: We analyse the impact of explicit CP-violation in the Higgs sector of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) on its consistency with the Higgs boson data from the Large Hadron Collider (LHC). Through detailed scans of the parameter space of the complex NMSSM for certain fixed values of one of its CP-violating (CPV) phases, we obtain a large number of points corresponding to five phenomenologically relevant scenarios containing \(\sim125\) GeV Higgs boson(s). We focus, in particular, on the scenarios where the visible peaks in the experimental samples can actually be explained by two nearly mass-degenerate neutral Higgs boson states. We find that some points corresponding to these scenarios give an overall slightly improved fit to the data, more so for nonzero values of the CPV phase, compared to the scenarios containing a single Higgs boson near 125GeV.

MSC:

81-05 Experimental work for problems pertaining to quantum theory
81T60 Supersymmetric field theories in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Fayet, P., Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nuclear Physics B, 90, 104-124 (1975) · doi:10.1016/0550-3213(75)90636-7
[2] Ellis, J.; Gunion, J. F.; Haber, H. E.; Roszkowski, L.; Zwirner, F., Higgs bosons in a nonminimal supersymmetric model, Physical Review D, 39, article 844 (1989) · doi:10.1103/physrevd.39.844
[3] Durand, L.; Lopez, J. L., Upper bounds on Higgs and top quark masses in the flipped SU(5)×U(1) superstring model, Physics Letters B, 217, 4, 463-466 (1989) · doi:10.1016/0370-2693(89)90079-8
[4] Drees, M., Supersymmetric models with extended Higgs sector, International Journal of Modern Physics A, 4, 14, article 3635 (1989) · doi:10.1142/s0217751x89001448
[5] Ellwanger, U.; Hugonie, C.; Teixeira, A. M., The next-to-minimal supersymmetric standard model, Physics Reports, 496, 1-2, 1-77 (2010) · doi:10.1016/j.physrep.2010.07.001
[6] Maniatis, M., The next-to-minimal supersymmetric extension of the standard model reviewed, International Journal of Modern Physics A, 25, 3505-3602 (2010) · Zbl 1194.81301
[7] Aad, G.; Abajyan, T.; Abbott, B., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, 716, 1, 1-29 (2012) · doi:10.1016/j.physletb.2012.08.020
[8] Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B, 716, 1, 30-61 (2012) · doi:10.1016/j.physletb.2012.08.021
[9] Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M., Observation of a new boson with mass near 125 GeV in pp collisions at \(\sqrt{s} = 7\) and 8 TeV, Journal of High Energy Physics, 2013, 6, article 081 (2013) · doi:10.1007/JHEP06(2013)081
[10] Ellwanger, U., A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, Journal of High Energy Physics, 2012, 3, article 44 (2012) · Zbl 1309.81323 · doi:10.1007/JHEP03(2012)044
[11] King, S. F.; Mühlleitner, M.; Nevzorov, R., NMSSM Higgs benchmarks near 125 GeV, Nuclear Physics B, 860, 2, 207-244 (2012) · Zbl 1246.81466 · doi:10.1016/j.nuclphysb.2012.02.010
[12] Cao, J.; Heng, Z.; Yang, J. M.; Zhang, Y.; Zhu, J., A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, Journal of High Energy Physics, 2012, article 86 (2012) · doi:10.1007/jhep03(2012)086
[13] Gunion, J. F.; Jiang, Y.; Kraml, S., Could two NMSSM Higgs bosons be present near 125 GeV?, Physical Review D, 86, 7 (2012) · doi:10.1103/physrevd.86.071702
[14] King, S.; Muhlleitner, M.; Nevzorov, R.; Walz, K., Natural NMSSM Higgs bosons, Nuclear Physics B, 870, 323-352 (2013) · Zbl 1262.81242
[15] Gherghetta, T.; von Harling, B.; Medina, A. D.; Schmidt, M. A., The scale-invariant NMSSM and the 126 GeV Higgs boson, Journal of High Energy Physics, 2013, 2, article 032 (2013) · doi:10.1007/jhep02(2013)032
[16] Wu, L.; Yang, J. M.; Yuan, C.-P.; Zhang, M., Higgs self-coupling in the MSSM and NMSSM after the LHC Run 1, Physics Letters B, 747, 378-389 (2015) · doi:10.1016/j.physletb.2015.06.020
[17] Munir, S.; Roszkowski, L.; Trojanowski, S., Simultaneous enhancement in gamma.gamma, b.b-bar and tau+.tau− rates in the NMSSM with nearly degenerate scalar and pseudoscalar Higgs bosons, Physical Review D, 88 (2013)
[18] Cohen, A. G.; Kaplan, D.; Nelson, A., Progress in electroweak baryogenesis, Annual Review of Nuclear and Particle Science, 43, 27-70 (1993) · doi:10.1146/annurev.ns.43.120193.000331
[19] Quiros, M., Field theory at finite temperature and phase transitions, Helvetica Physica Acta, 67, 5, 451-583 (1994) · Zbl 0858.46055
[20] Sakharov, A., Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh.Eksp.Teor.Fiz, 5, 32-35 (1967)
[21] Ibrahim, T.; Nath, P., CP violation from the standard model to strings, Reviews of Modern Physics, 80, article 577 (2008) · doi:10.1103/revmodphys.80.577
[22] Cohen, T.; Morrissey, D. E.; Pierce, A., Electroweak baryogenesis and Higgs signatures, Physical Review D, 86 (2012) · doi:10.1103/PhysRevD.86.013009
[23] Curtin, D.; Jaiswal, P.; Meade, P., Excluding electroweak baryogenesis in the MSSM, Journal of High Energy Physics, 2012, 8, article 005 (2012)
[24] Carena, M.; Nardini, G.; Quiros, M.; Wagner, C. E., MSSM electroweak baryogenesis and LHC data, Journal of High Energy Physics, 2013, 2, article 001 (2013)
[25] Pilaftsis, A., CP-odd tadpole renormalization of Higgs scalar-pseudoscalar mixing, Physical Review D, 58 (1998) · doi:10.1103/PhysRevD.58.096010
[26] Pilaftsis, A., Higgs scalar—pseudoscalar mixing in the minimal supersymmetric standard model, Physics Letters B, 435, 88-100 (1998)
[27] Pilaftsis, A.; Wagner, C. E. M., Higgs bosons in the minimal supersymmetric standard model with explicit CP violation, Nuclear Physics B, 553, 1-2, 3-42 (1999) · doi:10.1016/S0550-3213(99)00261-8
[28] Carena, M. S.; Ellis, J. R.; Pilaftsis, A.; Wagner, C. E. M., Renormalization-group-improved effective potential for the MSSM Higgs sector with explicit CP violation, Nuclear Physics B, 586, 1-2, 92-140 (2000) · doi:10.1016/s0550-3213(00)00358-8
[29] Choi, S. Y.; Drees, M.; Lee, J. S., Loop corrections to the neutral Higgs boson sector of the MSSM with explicit CP violation, Physics Letters B, 481, 1, 57-66 (2000) · doi:10.1016/s0370-2693(00)00421-4
[30] Carena, M. S.; Ellis, J. R.; Pilaftsis, A.; Wagner, C., Higgs boson pole masses in the MSSM with explicit CP violation, Nuclear Physics B, 625, 345-371 (2002)
[31] Carena, M.; Ellis, J.; Mrenna, S.; Pilaftsis, A.; Wagner, C. E. M., Collider probes of the MSSM Higgs sector with explicit CP violation, Nuclear Physics B, 659, 1-2, 145-178 (2003) · doi:10.1016/S0550-3213(03)00192-5
[32] Choi, S. Y.; Kalinowski, J.; Liao, Y.; Zerwas, P. M., \(H/A\) Higgs mixing in CP-noninvariant supersymmetric theories, European Physical Journal C, 40, 4, 555-564 (2005) · doi:10.1140/epjc/s2005-02145-9
[33] Baker, C. A.; Doyle, D. D.; Geltenbort, P.; Green, K.; Van Der Grinten, M. G. D.; Harris, P. G.; Iaydjiev, P.; Ivanov, S. N.; May, D. J. R.; Pendlebury, J. M.; Richardson, J. D.; Shiers, D.; Smith, K. F., Improved experimental limit on the electric dipole moment of the neutron, Physical Review Letters, 97, 13 (2006) · doi:10.1103/PhysRevLett.97.131801
[34] Commins, E. D., Electric dipole moments of elementary particles, nuclei, atoms, and molecules, Journal of the Physical Society of Japan, 76, 11 (2007) · doi:10.1143/jpsj.76.111010
[35] Griffith, W. C.; Swallows, M. D.; Loftus, T. H.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N., Improved limit on the permanent electric dipole moment of Hg-199, Physical Review Letters, 102, 10 (2009) · doi:10.1103/physrevlett.102.101601
[36] Abel, S.; Khalil, S.; Lebedev, O., EDM constraints in supersymmetric theories, Nuclear Physics B, 606, 1-2, 151-182 (2001) · doi:10.1016/s0550-3213(01)00233-4
[37] Haba, N., Explicit CP violation in the Higgs sector of the next-to-minimal supersymmetric standard model, Progress of Theoretical Physics, 97, 2, 301-309 (1997) · doi:10.1143/ptp.97.301
[38] Ibrahim, T.; Nath, P., The neutron and the lepton EDMs in MSSM, large CP violating phases, and the cancellation mechanism, Physical Review D, 58 (1998)
[39] Boz, M., The Higgs sector and electron electric dipole moment in next-to-minimal supersymmetry with explicit CP violation, Modern Physics Letters A, 21, 3, 243-264 (2006) · doi:10.1142/s021773230601855x
[40] Ellis, J. R.; Lee, J. S.; Pilaftsis, A., Electric dipole moments in the MSSM reloaded, Journal of High Energy Physics, 2008, 10, article 049 (2008)
[41] Li, Y.; Profumo, S.; Ramsey-Musolf, M., A comprehensive analysis of electric dipole moment constraints on CP-violating phases in the MSSM, Journal of High Energy Physics, 2010, article 62 (2010) · Zbl 1291.81462 · doi:10.1007/jhep08(2010)062
[42] Huber, S. J.; Schmidt, M. G., Electroweak baryogenesis: concrete in a SUSY model with a gauge singlet, Nuclear Physics B, 606, 1-2, 183-230 (2001) · doi:10.1016/s0550-3213(01)00250-4
[43] Huber, S. J.; Konstandin, T.; Prokopec, T.; Schmidt, M. G., Baryogenesis in the MSSM, nMSSM and NMSSM, Nuclear Physics A, 785, 1-2, 206-209 (2007) · doi:10.1016/j.nuclphysa.2006.11.154
[44] Kanemura, S.; Senaha, E.; Shindou, T., First-order electroweak phase transition powered by additional F-term loop effects in an extended supersymmetric Higgs sector, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 706, 1, 40-45 (2011) · doi:10.1016/j.physletb.2011.10.046
[45] Cheung, K.; Hou, T.-J.; Lee, J. S.; Senaha, E., Singlino-driven electroweak baryogenesis in the next-to-MSSM, Physics Letters B, 710, 1, 188-191 (2012) · doi:10.1016/j.physletb.2012.02.070
[46] Huang, W.; Kang, Z.; Shu, J.; Wu, P.; Yang, J. M., New insights in the electroweak phase transition in the NMSSM, Physical Review D, 91, 2 (2015)
[47] Bi, X.-J.; Bian, L.; Huang, W.; Shu, J.; Yin, P.-F., Interpretation of the Galactic Center excess and electroweak phase transition in the NMSSM, Physical Review D, 92, 2 (2015)
[48] Moretti, S.; Munir, S.; Poulose, P., 125 GeV Higgs boson signal within the complex NMSSM, Physical Review D, 89 (2014) · doi:10.1103/physrevd.89.015022
[49] Demir, D. A., Effects of the supersymmetric phases on the neutral Higgs sector, Physical Review D, 60 (1999)
[50] Dedes, A.; Moretti, S., Effect of large supersymmetric phases on Higgs production, Physical Review Letters, 84, 1, 22-25 (2000) · doi:10.1103/physrevlett.84.22
[51] Dedes, A.; Moretti, S., Effects of CP violating phases on Higgs boson production at hadron colliders in the minimal supersymmetric standard model, Nuclear Physics B, 576, 29-55 (2000)
[52] Kane, G. L.; Wang, L.-T., Implications of supersymmetry phases for Higgs boson signals and limits, Physics Letters B, 488, 3-4, 383-389 (2000) · doi:10.1016/S0370-2693(00)00871-6
[53] Arhrib, A.; Ghosh, D. K.; Kong, O. C. W., Observing CP violating MSSM Higgs bosons at hadron colliders?, Physics Letters B, 537, 3-4, 217-226 (2002) · doi:10.1016/s0370-2693(02)01912-3
[54] Choi, S. Y.; Hagivvara, K.; Lee, J. S., Higgs boson decays in the minimal supersymmetric standard model with radiative Higgs sector CP violation, Physical Review D, 64, 3 (2001) · doi:iO.H03/PhysRevD.64.032004
[55] Choi, S. Y.; Drees, M.; Lee, J. S.; Song, J., Supersymmetric Higgs boson decays in the MSSM with explicit CP violation, European Physical Journal C, 25, 2, 307-313 (2002)
[56] Ellis, J. R.; Lee, J. S.; Pilaftsis, A., CERN LHC signatures of resonant CP violation in a minimal supersymmetric Higgs sector, Physical Review D, 70 (2004)
[57] Hesselbach, S.; Moretti, S.; Munir, S.; Poulose, P., Explicit CP violation in the MSSM through \(g g \to H_1 \to \gamma \gamma \), Physical Review D, 82 (2010)
[58] Fritzsche, T.; Heinemeyer, S.; Rzehak, H.; Schappacher, C., Heavy scalar top quark decays in the complex MSSM: a full one-loop analysis, Physical Review D, 86, 3 (2012) · doi:10.1103/physrevd.86.035014
[59] Chakraborty, A.; Das, B.; Diaz-Cruz, J. L.; Ghosh, D. K.; Moretti, S.; Poulose, P., 125 GeV Higgs signal at the LHC in the CP-violating MSSM, Physical Review D, 90, 5 (2014) · doi:10.1103/PhysRevD.90.055005
[60] Funakubo, K.; Tao, S.; Toyoda, F., Phase transitions in the NMSSM, Progress of Theoretical Physics, 114, 2, 369-389 (2005)
[61] Ham, S. W.; Oh, S. K.; Son, D., Neutral Higgs sector of the next-to-minimal supersymmetric standard model with explicit CP violation, Physical Review D, 65 (2002) · doi:10.1103/PhysRevD.65.075004
[62] Funakubo, K.; Tao, S., The Higgs sector in the next-to-MSSM, Progress of Theoretical Physics, 113, 4, 821-842 (2005) · doi:10.1143/PTP.113.821
[63] Cheung, K.; Hou, T.-J.; Lee, J. S.; Senaha, E., The Higgs boson sector of the Nextto-MSSM with CP violation, Physical Review D, 82 (2010)
[64] Cheung, K.; Hou, T.-J.; Lee, J. S.; Senaha, E., Higgs-mediated electric-dipole moments in the next-to-minimal supersymmetric standard model: an application to electroweak baryogenesis, Physical Review D, 84 (2011) · doi:10.1103/PhysRevD.84.015002
[65] Munir, S., Novel Higgs-to-125 GeV Higgs boson decays in the complex NMSSM, Physical Review D, 89 (2014)
[66] Domingo, F., A new tool for the study of the CP-violating NMSSM, Journal of High Energy Physics, 2015, 6, article 052 (2015) · Zbl 1388.81972 · doi:10.1007/JHEP06(2015)052
[67] Graf, T.; Gröber, R.; Mühlleitner, M.; Rzehak, H.; Walz, K., Higgs boson masses in the complex NMSSM at one-loop level, Journal of High Energy Physics, 2012, 10, article 122 (2012) · doi:10.1007/jhep10(2012)122
[68] Muhlleitner, M.; Nhung, D. T.; Rzehak, H.; Walz, K., Two-loop contributions of the order \(O(\alpha_t \alpha_s)\) to the masses of the Higgs bosons in the CP-violating NMSSM, Journal of High Energy Physics, 2015, article 128 (2015)
[69] Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A., Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8TeV, The European Physical Journal C, 75, 5, article 212 (2015) · doi:10.1140/epjc/s10052-015-3351-7
[70] ATLAS Collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to \(25 fb^{−1}\) of proton-proton collision data, ATLAS-CONF-2014-009 (2014), Geneva, Switzerland: CERN, Geneva, Switzerland
[71] Baglio, J.; Gröber, R.; Mühlleitner, M.; Nhung, D. T.; Rzehak, H.; Spira, M.; Streicher, J.; Walz, K., NMSSMCALC: a program package for the calculation of loop-corrected Higgs boson masses and decay widths in the (complex) NMSSM, Computer Physics Communications, 185, 12, 3372-3391 (2014) · doi:10.1016/j.cpc.2014.08.005
[72] Aad, G.; Abbott, B.; Abdallah, J., Combined measurement of the boson mass in pp collisions at \(\sqrt{s} = 7\) and 8 TeV with the ATLAS and CMS experiments, Physical Review Letters, 114 (2015)
[73] Bechtle, P.; Heinemeyer, S.; Stål, O.; Stefaniak, T.; Weiglein, G., HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, The European Physical Journal C, 74, 2, article 2711 (2014) · doi:10.1140/epjc/s10052-013-2711-4
[74] Gunion, J. F.; Jiang, Y.; Kraml, S., Diagnosing degenerate Higgs bosons at 125 GeV, Physical Review Letters, 110, 5 (2013) · doi:10.1103/physrevlett.110.051801
[75] Goodsell, M. D.; Nickel, K.; Staub, F., Two-loop corrections to the Higgs masses in the NMSSM, Physical Review D, 91, 3 (2015) · doi:10.1103/PhysRevD.91.035021
[76] Staub, F.
[77] Feroz, F.; Hobson, M. P., Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses, Monthly Notices of the Royal Astronomical Society, 384, 2, 449-463 (2008) · doi:10.1111/j.1365-2966.2007.12353.x
[78] Feroz, F.; Hobson, M. P.; Bridges, M., MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Monthly Notices of the Royal Astronomical Society, 398, 4, 1601-1614 (2009) · doi:10.1111/j.1365-2966.2009.14548.x
[79] Feroz, F.; Hobson, M. P.; Cameron, E.; Pettitt, A. N., Importance nested sampling and the MultiNest algorithm
[80] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E., HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Computer Physics Communications, 181, 1, 138-167 (2010) · Zbl 1205.82001 · doi:10.1016/j.cpc.2009.09.003
[81] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E., HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Computer Physics Communications, 182, 12, 2605-2631 (2011) · Zbl 1205.82001 · doi:10.1016/j.cpc.2011.07.015
[82] Bechtle, P.; Brein, O.; Heinemeyer, S.; Stal, O.; Stefaniak, T.; Weiglein, G.; Williams, K., Recent Developments in HiggsBounds and a Preview of HiggsSignals · Zbl 1205.82001
[83] Bechtle, P.; Brein, O.; Heinemeyer, S.; Stål, O.; Stefaniak, T.; Weiglein, G.; Williams, K. E., HiggsBounds-4 : improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, The European Physical Journal C, 74, article 2693 (2014) · Zbl 1205.82001 · doi:10.1140/epjc/s10052-013-2693-2
[84] Djouadi, A.; Kalinowski, J.; Spira, M., HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Computer Physics Communications, 108, 1, 56-74 (1998) · Zbl 0938.81515 · doi:10.1016/s0010-4655(97)00123-9
[85] Das, B.; Moretti, S.; Munir, S.; Poulose, P.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.