×

A derivative-free optimization approach for the autotuning of a forex trading strategy. (English) Zbl 1471.90116

Summary: A trading strategy simply consists in a procedure which defines conditions for buying or selling a security on a financial market. These decisions rely on the values of some indicators that, in turn, affect the tuning of the strategy parameters. The choice of these parameters significantly affects the performance of the trading strategy. In this work, an optimization procedure is proposed to find the best parameter values of a chosen trading strategy by using the security price values over a given time period; these parameter values are then applied to trade on the next incoming security price sequence. The idea is that the market is sufficiently stable so that a trading strategy that is optimally tuned in a given period still performs well in the successive period. The proposed optimization approach tries to determine the parameter values which maximize the profit in a trading session, therefore the objective function is not defined in closed form but through a procedure that computes the profit obtained in a sequence of transactions. For this reason the proposed optimization procedures are based on a black-box optimization approach. Namely they do not require the assumption that the objective function is continuously differentiable and do not use any first order information. Numerical results obtained in a real case seem to be encouraging.

MSC:

90C26 Nonconvex programming, global optimization
90C90 Applications of mathematical programming

Software:

BFO; DFN; MISO; DFLBOX; OPAL; DFL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramson, MA; Audet, C.; Chrissis, JW; Walston, JG, Mesh adaptive direct search algorithms for mixed variable optimization, Optim. Lett., 3, 1, 35-47 (2009) · Zbl 1154.90551 · doi:10.1007/s11590-008-0089-2
[2] Atsalakis, G.; Valavanis, K., Surveying stock market forecasting techniques, part 2: soft computing methods, Expert Syst. Appl., 36, 5932-5941 (2009) · doi:10.1016/j.eswa.2008.07.006
[3] Audet, C.; Dang, KC; Orban, D., Optimization of algorithms with OPAL, Math. Progr. Comput., 6, 3, 233-254 (2014) · Zbl 1323.65063 · doi:10.1007/s12532-014-0067-x
[4] Audet, C.; Dennis, JE Jr, Pattern search algorithms for mixed variable programming, SIAM J. Optim., 11, 3, 573-594 (2001) · Zbl 1035.90048 · doi:10.1137/S1052623499352024
[5] Audet, C.; Le Digabel, S.; Tribes, C., The mesh adaptive direct search algorithm for granular and discrete variables, SIAM J. Optim., 29, 2, 1164-1189 (2019) · Zbl 1411.90229 · doi:10.1137/18M1175872
[6] Audet, C.; Orban, D., Finding optimal algorithmic parameters using derivative-free optimization, SIAM J. Optim., 17, 3, 642-664 (2006) · Zbl 1128.90060 · doi:10.1137/040620886
[7] Chand, S.; Shahid, K.; Imran, A., Modeling and volatility analysis of share prices using arch and garch models, World Appl. Sci. J., 19, 1, 77-82 (2012)
[8] Dase, R.; Pawar, D., Application of artificial neural network for stock market predictions: a review of literature, Int. J. Mach. Intel. Eng. Technol., 2, 2, 14-17 (2010) · doi:10.9735/0975-2927.2.2.14-17
[9] Dase, R.; Pawar, D.; Daspute, D., Methodologies for prediction of stock market: an artificial neural network, Int. J. Stat. Math., 1, 1, 8-15 (2011)
[10] De Santis, A., Dellepiane, U., Lucidi, S., Renzi, S.: Optimal step-wise parameter optimization of a Forex trading strategy. Technical report, Department of Computer, Control, and Management Engineering Antonio Ruberti (2014)
[11] Di Pillo, G.; Lucidi, S.; Rinaldi, F., A derivative-free algorithm for constrained global optimization based on exact penalty functions, J. Optim. Theory Appl., 164, 3, 862-882 (2015) · Zbl 1330.90085 · doi:10.1007/s10957-013-0487-1
[12] Fasano, G.; Liuzzi, G.; Lucidi, S.; Rinaldi, F., A linesearch-based derivative-free approach for nonsmooth constrained optimization, SIAM J. Optim., 24, 3, 959-992 (2014) · Zbl 1302.90207 · doi:10.1137/130940037
[13] Jahn, J., Introduction to the Theory of Nonlinear Optimization (2007), Berlin: Springer, Berlin · Zbl 1115.49001
[14] Jones, DR; Perttunen, CD; Stuckman, BE, Lipschitzian optimization without the lipschitz constant, J. Optim. Theory Appl., 79, 1, 157-181 (1993) · Zbl 0796.49032 · doi:10.1007/BF00941892
[15] Kirkpatrtck, S.; Gelatf, CD; Vecchi, MP, Optimization by simulated annealing, Science, 220, 621-680 (1983) · Zbl 1225.90162
[16] Larson, J.; Menickelly, M.; Wild, SM, Derivative-free optimization methods, Acta Numer., 28, 287-404 (2019) · Zbl 1461.65169 · doi:10.1017/S0962492919000060
[17] Levinson, M.: The Economist Guide to Financial Markets 6th edn: why they exist and how they work. PublicAffairs, New York (2014)
[18] Liu, C.; Yeh, C.; Lee, S., Application of type-2 neuro-fuzzy modeling in stock price prediction, Appl. Soft Comput., 12, 1348-1358 (2012) · doi:10.1016/j.asoc.2011.11.028
[19] Liuzzi, G.; Lucidi, S.; Piccialli, V., Exploiting derivative-free local searches in direct-type algorithms for global optimization, Comput. Optim. Appl., 48, 1-27 (2014) · Zbl 1370.90194
[20] Liuzzi, G.; Lucidi, S.; Rinaldi, F., Derivative-free methods for bound constrained mixed-integer optimization, Comput. Optim. Appl., 53, 505-526 (2011) · Zbl 1257.90058 · doi:10.1007/s10589-011-9405-3
[21] Lucidi, S.; Piccioni, M., Random tunneling by means of acceptance-rejection sampling for global optimization, J. Optim. Theory Appl., 62, 2, 255-277 (1989) · Zbl 0651.90066 · doi:10.1007/BF00941057
[22] Mitra, S., Is hurst exponent value useful in forecasting financial time series?, Asian Soc. Sci., 8, 8, 111-120 (2012) · doi:10.5539/ass.v8n8p111
[23] Müller, J., Miso: mixed-integer surrogate optimization framework, Optim. Eng., 17, 1, 177-203 (2016) · Zbl 1364.90230 · doi:10.1007/s11081-015-9281-2
[24] Myszkowski, P., Bicz, A.: Evolutionary algorithm in forex trade strategy generation. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 81-88 (2010)
[25] Pai, P.; Lin, C., A hybrid arima and support vector machines model in stock price forecasting, Omega Int. J. Manag. Sci., 33, 497-505 (2005) · doi:10.1016/j.omega.2004.07.024
[26] Paulavičius, R.; Sergeyev, YD; Kvasov, DE; Žilinskas, J., Globally-biased disimpl algorithm for expensive global optimization, J. Global Optim., 59, 2, 545-567 (2014) · Zbl 1297.90130 · doi:10.1007/s10898-014-0180-4
[27] Porcelli, M.; Toint, PL, Bfo, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables, ACM Trans. Math. Softw., 44, 1, 1-25 (2017) · Zbl 1484.65136 · doi:10.1145/3085592
[28] Razi, MA; Athappilly, K., Comparative predictive analysis of neural networks(nns), nonlinear regression and classification and regression tree (cart) models, Expert Syst. Appl., 29, 65-74 (2009) · doi:10.1016/j.eswa.2005.01.006
[29] Solis, FB; Wets, R., Minimization by random search techniques, Math. Oper. Res., 6, 1, 19-30 (1981) · Zbl 0502.90070 · doi:10.1287/moor.6.1.19
[30] Sparks, J., Yurova, Y.: Comparative performance of arima and arch/garch models on time series of daily equity prices for large companies. In: SWDSI Proceedings of 37-th Annual Conference, pp. 563-573 (2006)
[31] Valeriy, G.; Supriya, B., Support vector machine as an efficient framework for stock market volatility forecasting, Comput. Manag. Sci., 3, 147-160 (2006) · Zbl 1142.91718 · doi:10.1007/s10287-005-0005-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.