×

The algebraic method in quadrature for uncertainty quantification. (English) Zbl 1342.62135

Summary: A general method of quadrature for uncertainty quantification (UQ) is introduced based on the algebraic method in experimental design. This is a method based on the theory of zero-dimensional algebraic varieties. It allows quadrature of polynomials or polynomial approximands for quite general sets of quadrature points, here called “designs”. The method goes some way to explaining when quadrature weights are nonnegative and gives exact quadrature for monomials in the quotient ring defined by the algebraic method. The relationship to the classical methods based on zeros of orthogonal polynomials is discussed, and numerical comparisons are made with methods such as Gaussian quadrature and Smolyak grids. Application to UQ is examined in the context of polynomial chaos expansion and the probabilistic collocation method, where solution statistics are estimated.

MSC:

62K20 Response surface designs
65D30 Numerical integration
65D32 Numerical quadrature and cubature formulas
70G55 Algebraic geometry methods for problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] J. Abbott and A. Bigatti, {\it CoCoALib: A C++ Library for Doing Computations in Commutative Algebra}, available at http://cocoa.dima.unige.it/cocoalib (2013). · Zbl 1267.13048
[2] R. Askey and J. Wilson, {\it Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials}, Mem. Amer. Math. Soc. Series, 54 (1985), 319. · Zbl 0572.33012
[3] E. Babson, S. Onn, and R. Thomas, {\it The Hilbert zonotope and a polynomial time algorithm for universal Grobner bases}, Adv. in Appl. Math., 30 (2003), pp. 529-544. · Zbl 1039.13018
[4] R. A. Bates, H. Maruri-Aguilar, and H. P. Wynn, {\it Smooth supersaturated models}, J. Stat. Comput. Simul., 84 (2014), pp. 2453-2464. · Zbl 1306.62180
[5] Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weismantel, and H. P. Wynn, {\it Nonlinear matroid optimization and experimental design}, SIAM J. Discrete Math., 22 (2008), pp. 901-919. · Zbl 1198.05024
[6] Y. Berstein, H. Maruri-Aguilar, S. Onn, E. Riccomagno, and H. P. Wynn, {\it Minimal average degree aberration and the state polytope for experimental designs}, Ann. Inst. Statist. Math., 62 (2010), pp. 673-698. · Zbl 1440.62304
[7] M. Berveiller, B. Sudret, and M. Lemaire, {\it Stochastic finite elements: A non intrusive approach by regression}, Revue Européenne de Mécanique Numérique, 15 (2006), pp. 81-92. · Zbl 1325.74171
[8] R. Cameron and W. Martin, {\it The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals}, Ann. of Math. (2), 48 (1947), pp. 385-392. · Zbl 0029.14302
[9] CoCoATeam, {\it CoCoA: A System for Doing Computations in Commutative Algebra}, available at http://cocoa.dima.unige.it (2013).
[10] D. Cox, J. Little, and D. O’Shea, {\it Ideals, Varieties, and Algorithms}, 2nd ed., Springer-Verlag, New York, 1997. · Zbl 0861.13012
[11] C. Fassino, G. Pistone, and E. Riccomagno, {\it The Algebra of Interpolatory Cubature Formulae for Generic Nodes}, preprint, http://arxiv.org/abs/1207.3143 arXiv:1207.3143[math.ST], 2013. · Zbl 1325.62148
[12] J. Franco, D. Dupuy, O. Roustant, G. Damblin, and B. Iooss, {\it DiceDesign: Designs of Computer Experiments}, http://CRAN.R-project.org/package=DiceDesign (2013).
[13] W. Gautschi, {\it Construction of Gauss-Christoffel quadrature formulas}, Math. Comp., 22 (1968), pp. 251-270. · Zbl 0187.10603
[14] A. Genz and B. D. Keister, {\it Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight}, J. Comput. Appl. Math., 71 (1996), pp. 299-309. · Zbl 0856.65011
[15] T. Gerstner and M. Griebel, {\it Dimension-adaptive tensor-product quadrature}, Computing, 71 (2003), pp. 65-87. · Zbl 1030.65015
[16] M. Hamada and C. F. J. Wu, {\it Analysis of designed experiments with complex aliasing}, J. Quality Tech., 24 (1992), pp. 130-137.
[17] J. Ko, {\it Applications of the Generalized Polynomial Chaos to the Numerical Simulations of Stochastic Shear Flow}, Ph.D. thesis, Université Pierre et Marie Curie, Paris, France, 2009.
[18] J. Ko and J. Garnier, {\it Multi-element stochastic spectral projection for high quantile estimation}, J. Comput. Phys., 243 (2013), pp. 87-108. · Zbl 1349.62099
[19] H. Maruri-Aguilar and H. Wynn, {\it The algebraic method in experimental design}, in Handbook of Design and Analysis of Experiments, A. Dean, M. Morris, J. Stufken, and D. Bingham, eds., Chapman & Hall/CRC, Boca Raton, FL, 2015, ch. 11. · Zbl 1359.62333
[20] Maxima, {\it Maxima: A Computer Algebra System. Version 5.25.1}, available at http://maxima.sourceforge.net/ (2011).
[21] S. Onn and B. Sturmfels, {\it Cutting corners}, Adv. in Appl. Math., 23 (1999), pp. 29-48. · Zbl 0955.52008
[22] G. Pistone, E. Riccomagno, and H. P. Wynn, {\it Gröbner basis methods for structuring and analysing complex industrial experiments}, Internat. J. Reliability Quality Safety Engrg., 7 (2000), pp. 285-300.
[23] G. Pistone, E. Riccomagno, and H. P. Wynn, {\it Algebraic Statistics}, Monogr. Statist. Appl. Probab. 89, Chapman & Hall/CRC, Boca Raton, FL, 2001. · Zbl 0960.62003
[24] G. Pistone and H. Wynn, {\it Generalised confounding with Gröbner bases}, Biometrika, 83 (1996), pp. 653-666. · Zbl 0928.62060
[25] I. M. Sobol’, {\it Sensitivity estimate for nonlinear mathematical models}, Math Modeling Comput. Experiment, 1 (1993), pp. 407-414. · Zbl 1039.65505
[26] B. Sudret, {\it Global sensitivity analysis using polynomial chaos expansion}, Reliability Engrg. System Safety, 93 (2008), pp. 964-979.
[27] G. Tang, G. Iaccarino, and M. S. Eldred, {\it SDM 2010 student papers competition global sensitivity analysis for stochastic collocation}, in 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010.
[28] M. A. Tatang, {\it Direct Incorporation of Uncertainty in Chemical and Environmental Engineering Systems}, Ph.D. thesis, Department of Chemical Engineering, MIT, Cambridge, MA, 1995.
[29] N. Wiener, {\it The homogeneous chaos}, Amer. J. Math., 60 (1938), pp. 897-936. · JFM 64.0887.02
[30] D. Xiu, {\it Numerical Methods for Stochastic Computations: A Spectral Method Approach}, Princeton University Press, Princeton, NJ, 2010. · Zbl 1210.65002
[31] D. Xiu and G. E. Karniadakis, {\it The Wiener-Askey polynomial chaos for stochastic differential equations}, SIAM J. Sci. Comput., 24 (2002), pp. 619-644. · Zbl 1014.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.